二项式定理及其的扩展的学习笔记

这篇博客探讨了二项式定理的基础及其扩展,包括二项式系数的计算、杨辉三角的性质、多项式定理以及牛顿二项式定理。通过实例和证明,展示了这些理论在解决组合数学问题中的应用,并提供了相关证明和公式。此外,还提及了二项式系数与杨辉三角之间的关系,以及它们在编程竞赛中的潜在用途。
摘要由CSDN通过智能技术生成

这篇博客同时发布于洛谷上。

洛谷博客

五一假期过来写学习笔记,乐。

话不多说,直接步入主题吧。

二项式系数

就是像 ( n m ) \dbinom{n}{m} (mn) 这样的东西。

对于非负整数 n , k n,k n,k,规定 ( n 0 ) = 1 \dbinom{n}{0}=1 (0n)=1 ( n n ) = 1 \dbinom{n}{n}=1 (nn)=1 k > n k>n k>n ( n k ) = 0 \dbinom{n}{k}=0 (kn)=0 1 ≤ k ≤ n 1 \le k \le n 1kn n n n 为正整数,则 ( n k ) = n ! k ! ( n − k ) ! \dbinom{n}{k}=\dfrac{n!}{k!(n-k)!} (kn)=k!(nk)!n!

我们知道 ( n m ) = n ! m ! ( n − m ) ! \dbinom{n}{m}=\dfrac{n!}{m!(n-m)!} (mn)=m!(nm)!n!,那么显然可以得出 ( n m ) = n ( n − 1 ) . . . ( n − m + 1 ) m ! \dbinom{n}{m}=\dfrac{n(n-1)...(n-m+1)}{m!} (mn)=m!n(n1)...(nm+1),还有 ( n m ) = ( n n − m ) \dbinom{n}{m}=\dbinom{n}{n-m} (mn)=(nmn)

二项式定理

对于一个非负整数 n n n ( x + y ) n = x n + ( n 1 ) x n − 1 y + ( n 2 ) x n − 2 y 2 + . . . + ( n n − 1 ) x y n − 1 + y n (x+y)^n=x^n+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^2+...+\binom{n}{n-1}xy^{n-1}+y^n (x+y)n=xn+(1n)xn1y+(2n)xn2y2+...+(n1n)xyn1+yn,用求和符号表示就是 ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum\limits_{k=0}^n\binom{n}{k}x^{n-k}y^k (x+y)n=k=0n(kn)xnkyk

在初一我们一定学过 ( x + y ) 2 = x 2 + 2 x y + y 2 (x+y)^2=x^2+2xy+y^2 (x+y)2=x2+2xy+y2,这其实就是二项式定理的一个特殊形式。

假设 y = 1 y=1 y=1,则可得 ( x + 1 ) n = ∑ k = 0 n ( n k ) x k (x+1)^n=\sum\limits_{k=0}^n\binom{n}{k}x^k (x+1)n=k=0n(kn)xk

杨辉三角(帕斯卡三角形)

杨辉三角就是像下面这样的东西:

   0  1  2  3  4  5  6 
  ---------------------
0 |1
1 |1  1
2 |1  2  1
3 |1  3  3  1
4 |1  4  6  4  1
5 |1  5 10 10  5  1
6 |1  6 15 20 15  6  1
......

(边框上的是坐标)

我们规定只有一个 1 1 1 的是第 0 0 0 行,1 1 是第 1 1 1 行,1 2 1 是第 2 2 2 行,以此类推。(但是我看百度百科上说 1 是第 1 1 1 行,在这里就当第

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值