二项式定理及其的扩展的学习笔记

这篇博客同时发布于洛谷上。

洛谷博客

五一假期过来写学习笔记,乐。

话不多说,直接步入主题吧。

二项式系数

就是像 ( n m ) \dbinom{n}{m} (mn) 这样的东西。

对于非负整数 n , k n,k n,k,规定 ( n 0 ) = 1 \dbinom{n}{0}=1 (0n)=1 ( n n ) = 1 \dbinom{n}{n}=1 (nn)=1 k > n k>n k>n ( n k ) = 0 \dbinom{n}{k}=0 (kn)=0 1 ≤ k ≤ n 1 \le k \le n 1kn n n n 为正整数,则 ( n k ) = n ! k ! ( n − k ) ! \dbinom{n}{k}=\dfrac{n!}{k!(n-k)!} (kn)=k!(nk)!n!

我们知道 ( n m ) = n ! m ! ( n − m ) ! \dbinom{n}{m}=\dfrac{n!}{m!(n-m)!} (mn)=m!(nm)!n!,那么显然可以得出 ( n m ) = n ( n − 1 ) . . . ( n − m + 1 ) m ! \dbinom{n}{m}=\dfrac{n(n-1)...(n-m+1)}{m!} (mn)=m!n(n1)...(nm+1),还有 ( n m ) = ( n n − m ) \dbinom{n}{m}=\dbinom{n}{n-m} (mn)=(nmn)

二项式定理

对于一个非负整数 n n n ( x + y ) n = x n + ( n 1 ) x n − 1 y + ( n 2 ) x n − 2 y 2 + . . . + ( n n − 1 ) x y n − 1 + y n (x+y)^n=x^n+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^2+...+\binom{n}{n-1}xy^{n-1}+y^n (x+y)n=xn+(1n)xn1y+(2n)xn2y2+...+(n1n)xyn1+yn,用求和符号表示就是 ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum\limits_{k=0}^n\binom{n}{k}x^{n-k}y^k (x+y)n=k=0n(kn)xnkyk

在初一我们一定学过 ( x + y ) 2 = x 2 + 2 x y + y 2 (x+y)^2=x^2+2xy+y^2 (x+y)2=x2+2xy+y2,这其实就是二项式定理的一个特殊形式。

假设 y = 1 y=1 y=1,则可得 ( x + 1 ) n = ∑ k = 0 n ( n k ) x k (x+1)^n=\sum\limits_{k=0}^n\binom{n}{k}x^k (x+1)n=k=0n(kn)xk

杨辉三角(帕斯卡三角形)

杨辉三角就是像下面这样的东西:

   0  1  2  3  4  5  6 
  ---------------------
0 |1
1 |1  1
2 |1  2  1
3 |1  3  3  1
4 |1  4  6  4  1
5 |1  5 10 10  5  1
6 |1  6 15 20 15  6  1
......

(边框上的是坐标)

我们规定只有一个 1 1 1 的是第 0 0 0 行,1 1 是第 1 1 1 行,1 2 1 是第 2 2 2 行,以此类推。(但是我看百度百科上说 1 是第 1 1 1 行,在这里就当第 0 0 0 行算QWQ)

杨辉三角每行端点与结尾的数为1,其余的数等于它上方两数之和。

为啥扯二项式却扯到杨辉三角了?

有一道提高组真题 P2822 [NOIP2016 提高组] 组合数问题,它需要用前缀和求解,由于我的代码是远古时期写的,我就直接粘上代码。

#include<bits/stdc++.h>
#define XD 114514

using namespace std;
int t,k,a[2010][2010],b[2010][2010];
int c[10010][10],num;
int main(){
	cin>>t>>k;
	for(int i=1;i<=t;i++){
		scanf("%d%d",&c[i][1],&c[i][2]);
		num=max(num,c[i][1]);
	}
	for(int i=1;i<=num+2;i++){
		for(int j=1;j<=i;j++){
			if(j==1 or j==i) a[i][j]=1;
			else{
				a[i][j]=a[i-1][j]+a[i-1][j-1];
				if(a[i][j]>=k) a[i][j]-=k;
			} 
		}
	}
	for(int i=3;i<=num+2;i++){
		for(int j=2;j<i;j++){
			if(a[i][j]==0 and j!=i+1) b[i-2][j-1]++;
			b[i-2][j-1]+=b[i-3][j-1]+b[i-2][j-2]-b[i-3][j-2];
		}
		b[i-2][i-1]=b[i-2][i-2];
	}
	for(int i=1;i<=t;i++){
		printf("%d\n",b[c[i][1]-1][min(c[i][1]-1,c[i][2])]);
	}
	return 0;
}

其实当时通过打表发现二项式系数构成的数字三角形和杨辉三角形完全一样,于是就愉快的求一遍前缀和就 AC 了。

那么根据杨辉三角的性质可得到 ( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) \dbinom{n}{k}=\dbinom{n-1}{k}+\dbinom{n-1}{k-1} (kn)=(kn1)+(k1n1),这就是帕斯卡公式。


这里我会写一些二项式系数其他的定理。

1. k ( n k ) = n ( n − 1 k − 1 ) k\dbinom{n}{k}=n\dbinom{n-1}{k-1} k(kn)=n(k1n1)

证明:

k ( n k ) = k × n ( n − 1 ) . . . ( n − k + 1 ) k ! = n ( n − 1 ) . . . ( n − k + 1 ) ( k − 1 ) ! = n × ( n − 1 ) ( n − 2 ) . . . ( n − k + 1 ) ( k − 1 ) ! = n ( n − 1 k − 1 ) \begin{aligned}k\dbinom{n}{k}&=k\times\dfrac{n(n-1)...(n-k+1)}{k!}\\&=\dfrac{n(n-1)...(n-k+1)}{(k-1)!}\\&=n\times\dfrac{(n-1)(n-2)...(n-k+1)}{(k-1)!}\\&=n\dbinom{n-1}{k-1}\end{aligned} k(kn)=k×k!n(n1)...(nk+1)=(k1)!n(n1)...(nk+1)=n×(k1)!(n1)(n2)...(nk+1)=n(k1n1)

2. ∑ k = 0 n ( n k ) = 2 n \sum\limits_{k=0}^n\dbinom{n}{k}=2^n k=0n(kn)=2n

证明:这个用排列组合证明自认为更简单。设 S S S 为一个有 n n n 个互不相同元素的集合,在集合中选出若干个元素放入集合 T T T 中,则 T T T 集合有 2 n 2^n 2n 种不同的情况,因为每个元素有放入 T T T 集合和不放入 T T T 集合两种选择,所以有 2 n 2^n 2n 种。也可以说是把 T T T 种只有 1 1 1 个元素的情况数、 T T T 种有 2 2 2 个元素的情况数… T T T 种有 n n n 个元素的情况数求和,也就是 ∑ k = 0 n ( n k ) \sum\limits_{k=0}^n\dbinom{n}{k} k=0n(kn),于是就证出来了。QWQ

3. ( n 0 ) − ( n 1 ) + ( n 2 ) − ( n 3 ) + . . . + ( − 1 ) n ( n n ) = 0 ( n ≥ 1 ) \dbinom{n}{0}-\dbinom{n}{1}+\dbinom{n}{2}-\dbinom{n}{3}+...+(-1)^n\dbinom{n}{n}=0 (n\ge 1) (0n)(1n)+(2n)(3n)+...+(1)n(nn)=0(n1)

证明:把这个柿子转换一下就变成了 ( n 0 ) + ( n 2 ) + . . . = ( n 1 ) + ( n 3 ) + . . . = 2 n − 1 \binom{n}{0}+\binom{n}{2}+...=\binom{n}{1}+\binom{n}{3}+...=2^{n-1} (0n)+(2n)+...=(1n)+(3n)+...=2n1,由上面的第 2 2 2 的柿子可得, ∑ k = 0 n − 1 ( n − 1 k ) = 2 n − 1 \sum\limits_{k=0}^{n-1}\binom{n-1}{k}=2^{n-1} k=0n1(kn1)=2n1,我们来看杨辉三角的图,根据帕斯卡公式, ( n 0 ) + ( n 2 ) + . . . = ( n 1 ) + ( n 3 ) + . . . = 2 n − 1 \binom{n}{0}+\binom{n}{2}+...=\binom{n}{1}+\binom{n}{3}+...=2^{n-1} (0n)+(2n)+...=(1n)+(3n)+...=2n1 就变成了 ( n − 1 0 ) + ( n − 1 1 ) + ( n − 1 3 ) + . . . = ( n − 1 0 ) + ( n − 1 1 ) + ( n − 1 3 ) + . . . = 2 n − 1 \binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{3}+...=\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{3}+...=2^{n-1} (0n1)+(1n1)+(3n1)+...=(0n1)+(1n1)+(3n1)+...=2n1,然后就没有然后了。QWQ

  1. 1 ( n 1 ) + 2 ( n 2 ) + . . + n ( n n ) = n 2 n − 1 1\dbinom{n}{1}+2\dbinom{n}{2}+..+n\dbinom{n}{n}=n2^{n-1} 1(1n)+2(2n)+..+n(nn)=n2n1

证明:

1 ( n 1 ) + 2 ( n 2 ) + . . + n ( n n ) = n ( n − 1 0 ) + n ( n − 1 1 ) + . . . + n ( n − 1 n − 1 ) = n ( ( n − 1 0 ) + ( n − 1 1 ) + . . . + ( n − 1 n − 1 ) ) = n 2 n − 1 \begin{aligned}1\binom{n}{1}+2\binom{n}{2}+..+n\binom{n}{n}&=n\binom{n-1}{0}+n\binom{n-1}{1}+...+n\binom{n-1}{n-1}\\&=n(\binom{n-1}{0}+\binom{n-1}{1}+...+\binom{n-1}{n-1})\\&=n2^{n-1}\end{aligned} 1(1n)+2(2n)+..+n(nn)=n(0n1)+n(1n1)+...+n(n1n1)=n((0n1)+(1n1)+...+(n1n1))=n2n1

  1. ∑ k = 0 n ( n k ) 2 = ( 2 n n ) ( n ≥ 0 ) \sum\limits_{k=0}^n\dbinom{n}{k}^2=\dbinom{2n}{n}(n \ge 0) k=0n(kn)2=(n2n)(n0)

证明:设 S S S 是一个有 2 n 2n 2n 个互不相同元素的集合,在集合 S S S 中选出 n n n 个元素,则有 ( 2 n n ) \binom{2n}{n} (n2n) 种方案,也可以把 S S S 分为 A A A B B B 两个子集,每个子集中都有 n n n 个元素,假设在 A A A 中选 k k k 该数,则在 B B B 中选 ( n − k ) (n-k) (nk) 个数,则有 ∑ k = 0 n ( n k ) ( n n − k ) = ∑ k = 0 n ( n k ) 2 \sum\limits_{k=0}^n\binom{n}{k}\binom{n}{n-k}=\sum\limits_{k=0}^n\binom{n}{k}^2 k=0n(kn)(nkn)=k=0n(kn)2 种方案数,于是, ∑ k = 0 n ( n k ) 2 = ( 2 n n ) ( n ≥ 0 ) \sum\limits_{k=0}^n\binom{n}{k}^2=\binom{2n}{n}(n \ge 0) k=0n(kn)2=(n2n)(n0)

上面的第 5 5 5 个其实是范德蒙卷积公式中的一种特殊情况。

范德蒙卷积公式:对所有的正整数 m 1 , m 2 , n m_1,m_2,n m1,m2,n,有 ∑ k = 0 n ( m 1 k ) ( m 2 n − k ) = ( m 1 + m 2 k ) \sum\limits_{k=0}^n\binom{m_1}{k}\binom{m_2}{n-k}=\binom{m_1+m_2}{k} k=0n(km1)(nkm2)=(km1+m2)

多项式系数

没想到吧,有了二项式系数还有多项式系数。

( n n 1   n 2 . . . n t ) = n ! n 1 ! n 2 ! . . . n t ! \dbinom{n}{n_1\ n_2...n_t}=\dfrac{n!}{n_1!n_2!...n_t!} (n1 n2...ntn)=n1!n2!...nt!n!

多项式系数的帕斯卡公式:

( n n 1   n 2 . . . n t ) = ( n − 1 n 1 − 1   n 2 . . . n t ) + ( n n 1   n 2 − 1... n t ) + . . . + ( n n 1   n 2 . . . n t − 1 ) \dbinom{n}{n_1\ n_2...n_t}=\dbinom{n-1}{n_1-1\ n_2...n_t}+\dbinom{n}{n_1\ n_2-1...n_t}+...+\dbinom{n}{n_1\ n_2...n_t-1} (n1 n2...ntn)=(n11 n2...ntn1)+(n1 n21...ntn)+...+(n1 n2...nt1n)

多项式定理

( x 1 + x 2 + . . . + x t ) n = ∑ ( n n 1   n 2 . . . n t ) x 1 n 1 x 2 n 2 . . . x t n t (x_1+x_2+...+x_t)^n=\sum\dbinom{n}{n_1\ n_2...n_t}x_1^{n_1}x_2^{n_2}...x_t^{n_t} (x1+x2+...+xt)n=(n1 n2...ntn)x1n1x2n2...xtnt

其中求和的条件是满足 n 1 + n 2 + . . . + n t = n n_1+n_2+...+n_t=n n1+n2+...+nt=n 的非负整数解。

牛顿二项式定理

这个只把柿子写上,听说要用到微积分的知识。

α \alpha α 是实数。对于所有满足 0 ≤ ∣ x ∣ < ∣ y ∣ 0 \le |x| < |y| 0x<y x x x y y y,有 ( x + y ) α = ∑ k = 0 ∞ ( α k ) x k y α − k (x+y)^{\alpha}=\sum\limits_{k=0}^{\infty}\binom{\alpha}{k}x^ky^{\alpha-k} (x+y)α=k=0(kα)xkyαk,其中 ( α k ) = α ( α − 1 ) . . . ( α − k + 1 ) k ! \binom{\alpha}{k}=\frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} (kα)=k!α(α1)...(αk+1)


参考的网络文献

杨辉三角百度百科

二项式定理百度百科

acm数学(番外1) 范德蒙德卷积公式

【组合数学】多项式定理 ( 多项式定理 | 多项式定理证明 | 多项式定理推论 1 项数是非负整数解个数 | 多项式定理推论 2 每项系数之和 )


这时有人可能就要问了:“你巴拉巴拉写了这么多,那这些到底有啥用呢?”

我可以负责地对你说,这对 OI 没有任何卵用。(滑稽

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《二元齐次对称多项式与二项式定理》推广了二项式定理,建立了由二项式定理的无穷多个等价公式构成的集合B,给出了它们在多方面的应用,获得了数以百计的新的数学公式。 在微分学上,我们作了与前面完全平行的工作,即推广了莱布尼兹定理(公式);建立了由莱布尼兹定理(公式)的全体等价公式构成的无穷集合L。集合B与集合L间存在一一对应关系。给出了莱布尼兹定理(公式)的等价公式的一些有趣的应用。 《二元齐次对称多项式与二项式定理》的内容简介如下: 十七世纪著名的英国天才数学家、物理学家、力学家、天文学家牛顿(Newton,1642—1727)于1676年发现:任意一个二项式的任意次方幂的展开式的系数全是组合数,即(公式)(请参照书本) 这就是著名的牛顿二项式定理。其中a是实数,(公式)(请参照书本)。其后300多年来未见二项式定理有什么值得称道的新发展;然而科学实验、生产实践的发展却从不停滞,客观现实也都希望二项式定理能发挥更大的作用,但现状总难于改观。 为使二项式定理系列能涵盖更多的内容,扩大其使用的范围,笔者独辟蹊径,从对称多项式基本定理出发,由考虑二元齐次对称多项式与二项式定理间的关系入手,取得了可喜的进展。 众所周知,二元齐次对称多项式的一般形式为:(公式)(请参照书本)。 二元齐次对称多项式的全体构成的无穷集合为(公式)(请参照书本)。 将S中的每个多项式的初等表达式都写出后,便得到无穷多个恒等式,这无穷多个恒等式构成的集合记作B,即(公式)(请参照书本)。 我们要指出下面的结论: (1)已经将二项式定理推广成非常一般的形式; (2)集合B是由二项式定理和它的全部等价公式所构成的一个无穷集合; (3)无穷集合s与B的元素之间存在一一对应关系; (4)集合S、B的元素是完全平等的,无主次之分、无贵贱之别; (5)主要应用:将二项式定理的等价公式应用到算术、代数、三角函数、反三角函数、双曲函数、反双曲函数等方面,不仅能导出数以百计(远多于一百)的新的数学公式;特别应用到组合计数问题上,彻底地将历史遗留下来的解的大量不合情理的、不可理喻的表达形式,作了“根除术”后,恢复了本来面目。 由于微分学上的莱布尼兹(Leibniz,1646—1716)公式(定理)的展开式的系数与代数学上的二项式定理(公式)的展开式的相应系数完全一致,这又诱导我们在微分学上做了与代数学上完全平行的工作。即推广了莱布尼兹定理,建立了由莱布尼兹公式及它的无穷多个等价公式所构成的一个无穷集合:(公式)(请参照书本)。 莱布尼兹定理的等价公式也有多方面的应用,在此我们仅指出:将它们应用到某些不定积分的计算上,能将求不定积分的运算转化成求导的运算,这是一件令人难以置信的事。 考虑到《二元齐次对称多项式与二项式定理》的总结与提高,在全书的最后安排了第九章,简单介绍了一个代数系统——线性空间。线性空间的基本概念,在科技领域内已可以算得上是常识性的内容(概念)了,熟悉这一重要而又基本的概念是非常必要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值