5. Longest Palindromic Substring

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.


方法1:

DP找出[a,b]是否是回文串,在这个过程中,可以记录最大的回文串,O(N^2)

public static String longestPalindrome(String s)
	{
		int len=s.length();  
		if(len<1)
		    return "";
        boolean[][] dp=new boolean[len][len];  
        int indexi=0,indexj=0,max=Integer.MIN_VALUE;
        for(int i=len-1;i>=0;i--)  
            for(int j=0;j<len;j++)  
            {  
                if(i>=j)  
                    dp[i][j]=true;  
                else {  
                    dp[i][j]=dp[i+1][j-1]&&(s.charAt(i)==s.charAt(j));  
                    if(dp[i][j])
                    	if(Math.abs(i-j)>max)
                    	{
                    		max=Math.abs(i-j);
                    		indexi=i;
                    		indexj=j;
                    	}
                }  
            }  
        return s.substring(indexi, indexj+1);
	}


方法2:

逐个字符扫描,看以当前字符是否能够扩展形成的回文串最长是多长,因为回文串的对称中心有可能是一个字符,有可能是一个位置,

所以尝试扩展的时候要分情况,形成奇串和偶串的处理稍有不同。最坏情况O(N^2)

public static String longestPalindrome(String str)
    {
        if (str.isEmpty()) 
            return null;
        int[] odd, even;
        int max = 0, a = 0, b = 0;
        for (int i = 0; i < str.length(); i++) 
        {
            odd = expandPalindrome(str, i - 1, i + 1);
            if (odd[1] - odd[0] > max) 
            {
                a = odd[0];
                b = odd[1];
                max = b - a;
            }
            even = expandPalindrome(str, i, i + 1);
            if (even[1] - even[0] > max)
            {
                a = even[0];
                b = even[1];
                max = b - a;
            }
        }
    
        return str.substring(a, b);
    }

    private static int[] expandPalindrome(String str, int a, int b)
    {
        while (a >= 0 && b < str.length() && str.charAt(a) == str.charAt(b)) 
        {
            a--;
            b++;
        }
    return new int[]{a + 1,b};
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值