Offline RL : Generalized Decision Transformer for Offline Hindsight Information Matching

ICLR 2022 Spotlight
paper
code

Intro

基于序列模型架构的离线强化学习引入累计奖励丰富输入信号(HER 以及DT中的“returns-to-go:),从而帮助序列模型的样本效率提升。本文证明了所有这些方法都是事后信息匹配 (hindsight information matching,HIM)—通过训练策略,输出与未来状态信息的在一些统计数据相匹配的其他轨迹。因此,本文提出广义DT算法(GDT)解决离线任务中的HIM问题。同时基于GDT推出提出Categorical DT (CDT)解决多任务state-marginal matching (SMM)问题以及提出Bi-directional DT (BDT) 解决multi-task imitation learning问题。

Method

在这里插入图片描述

HIM

对于轨迹数据的信息统计表示为 I ( τ ) I(\tau) I(τ),此外定义对轨迹数据中(s,a)通过函数 Φ \Phi Φ进行特征提取后的得到 τ t Φ = { ϕ t , ϕ t + 1 , … , ϕ T } , ϕ t = Φ ( s t , a t ) ∈ F \tau_t^\Phi=\{\phi_t,\phi_{t+1},\ldots,\phi_T\},\phi_t=\Phi(s_t,a_t)\in F τtΦ={ϕt,ϕt+1,,ϕT},ϕt=Φ(st,at)F,以及该集合的信息统计量为 I Φ ( τ t ) I^\Phi(\tau_t) IΦ(τt)。将信息匹配(Information Match,IM)问题定义为学习一个条件策略π(a|s, z),执行该策略所产的轨迹满足一些期望的信息统计值z:
min ⁡ π E z ∼ p ( z ) , τ ∼ ρ z π ( τ ) [ D ( I Φ ( τ ) , z ) ] \min_\pi\mathbb{E}_{z\sim p(z),\tau\sim\rho_z^\pi(\tau)}\begin{bmatrix}D(I^\Phi(\tau),z)\end{bmatrix} πminEzp(z),τρzπ(τ)[D(IΦ(τ),z)]
上式说明当D=0时, z ∗ = I Φ z^* = I^\Phi z=IΦ, 此时轨迹中状态动作对于z便是最优,那就可以通过BC得到策略或者利用样本加速RL策略学习。

GDT

该方法基于DT算法,其中输入量中引入轨迹数据的信息统计值 I Φ I^\Phi IΦ。优化该模型预测动作的MSE损失,还需最小化信息值与z的先验分布间距离。不同的特征提取函数 Φ \Phi Φ以及 I I I将造就不同的GDT变体。下面讨论两种变体CDT与BDT

CDT

启发于Distribution RL,采用直方图的作为特征空间表达,然后加入到序列模型的输入,并且随着时间步采用类似bellman的递归更新方式。从代码中可以看出,这里对奖励作为变量 z z z
z Φ h i s t ( t ) ∝ ϕ ~ t + γ ( 1 − 1 [ t = T ] ) z Φ h i s t ( t + 1 ) z_{\Phi_{\mathsf{hist}}}(t)\propto\tilde{\phi}_t+\gamma(1-\mathbb{1}[t=T])z_{\Phi_{\mathsf{hist}}}(t+1) zΦhist(t)ϕ~t+γ(11[t=T])zΦhist(t+1)

DECISION TRANSFORMER WITH LEARNED Φ

CDT 假设提供了一些低维 Φ 用于易于处理的分布近似,但文章也研究了没有提供 Φ 或 r 的情况,而是通过自动编码来学习 。文章提出使用auto-encoding或者对比学习的方法得到 Φ \Phi Φ:

  1. CDT-AE:
    min ⁡ ψ E s ∼ D [ ∥ s − decoder ψ ( encoder ψ ( s ) ) ∥ 2 ] \min_\psi\mathbb{E}_{s\sim D}\left[\|s-\text{decoder}_\psi(\text{encoder}_\psi(s))\|^2\right] ψminEsD[sdecoderψ(encoderψ(s))2]
  2. CDT-CL:
    min ⁡ ψ E ϵ , ϵ ′ ∼ N ( 0 , σ ) s ∼ D , [ log ⁡ exp ⁡ ( encoder ψ ( s ) T W encoder ψ ~ ( s + ϵ ) ) ∑ ϵ ′ ≠ ϵ exp ⁡ ( encoder ψ ( s ) T W encoder ψ ~ ( s + ϵ ′ ) ) ] , \min_\psi\mathbb{E}_{\overset{s\sim D,}{\epsilon,\epsilon^{\prime}\sim\mathcal{N}(0,\sigma)}}\left[\log\frac{\exp\left(\text{encoder}_\psi(s)^TW\text{encoder}_{\tilde{\psi}}(s+\epsilon)\right)}{\sum_{\epsilon^{\prime}\neq\epsilon}\exp\left(\text{encoder}_\psi(s)^TW\text{encoder}_{\tilde{\psi}}(s+\epsilon^{\prime})\right)}\right], ψminEϵ,ϵN(0,σ)sD, logϵ=ϵexp(encoderψ(s)TWencoderψ~(s+ϵ))exp(encoderψ(s)TWencoderψ~(s+ϵ)) ,
    其中 ψ ~ ← m ψ ~ + ( 1 − m ) ψ \tilde{\psi}\leftarrow m\tilde{\psi}+(1-m)\psi ψ~mψ~+(1m)ψ

BI-DIRECTIONAL DECISION TRANSFORMER FOR ONE-SHOT IMITATION LEARNING

除了上述方法对 Φ \Phi Φ参数化处理,还有通过参数聚合器(parameterized aggregator)。启发于One-shot IL 方法GPT-1提出Bi-directional Decision Transformer (BDT). 其中anti-causal aggregator将z反序后编码,然后作为序列模型的输入

  • 28
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值