二叉树遍历之morris traversal

刚开始接触到这个是因为算法导论习题10.4-5,其中有一句话说不能改变二叉树结构,即使临时改变也不行,个人就感觉改变二叉树结构也可以进行遍历。


搜索的过程中发现了morris 遍历,刚开始根本不相信如此短的代码可以使用无栈、O(1) 空间进行二叉树遍历,但深入之后才发现这个想法是如此的巧妙,感谢J Morris,不知这个Morris 和KMP中的Morris 是否是同一个人?


morris 中序遍历

void bst_morris_inorder(struct bst_node *root)
{
    struct bst_node *p = root, *tmp;

    while (p) {
        if (p->left == NULL) {
            printf("%d ", p->key);
            p = p->right;
        }
        else {
            tmp = p->left;
            while (tmp->right != NULL && tmp->right != p)
                tmp = tmp->right;
            if (tmp->right == NULL) {
                tmp->right = p;
                p = p->left;
            }
            else {
                printf("%d ", p->key);
                tmp->right = NULL;
                p = p->right;
            }
        }
    }
}
代码相当简单,局部变量也只需要两个。以下简单讲述其实现方式。


morris traversal 原理很简单,利用所有叶子结点的right 指针,指向其后继结点,组成一个环,在第二次遍历到这个结点时,由于其左子树已经遍历完了,则访问该结点

如下图为morris 的一个示例



morris 前序遍历

void bst_morris_preorder(struct bst_node *root)
{
    struct bst_node *p = root, *tmp;

    while (p) {
        if (p->left == NULL) {
            printf("%d ", p->key);
            p = p->right;
        }
        else {
            tmp = p->left;
            while (tmp->right != NULL && tmp->right != p)
                tmp = tmp->right;
            if (tmp->right == NULL) {
                printf("%d ", p->key);                
                tmp->right = p;
                p = p->left;
            }
            else {
                tmp->right = NULL;
                p = p->right;
            }
        }
    }
}
比较简单,只要注意访问结点的顺序即可

morris 后序遍历

static void bst_morris_reverse(struct bst_node *node, struct bst_node *last)
{
    struct bst_node *p = node, *x, *y;
    if (p == last) {
        printf("%d ", last->key);
        return;
    }

    /* change right to parent pointer */
    x = p->right;
    for (;;) {
        if (x == last) {
            x->right = p;
            break;
        }
        y = x->right;
        x->right = p;
        p = x;
        x = y;
    }

    /* visit each */
    x = last;
    for (;;) {
        printf("%d ", x->key);
        if (x == node)
            break;
        x = x->right;
    } 

    /* revert right pointer */
    p = last;
    x = last->right;
    for (;;) {
        if (x == node) {
            x->right = p;
            break;
        }
        y = x->right;
        x->right = p;
        p = x;
        x = y;
    }
}


void bst_morris_postorder(struct bst_node *root)
{
    struct bst_node dummy;
    struct bst_node *p, *tmp;

    dummy.left = root;
    dummy.right = NULL;
    p = &dummy;

    while (p) {
        if (p->left == NULL) {
            p = p->right;
        }
        else {
            tmp = p->left;
            while (tmp->right != NULL && tmp->right != p)
                tmp = tmp->right;
            if (tmp->right == NULL) {
                tmp->right = p;
                p = p->left;
            }
            else {
                bst_morris_reverse(p->left, tmp);
                tmp->right = NULL;
                p = p->right;
            }
        }
    }
}
后序遍历比较复杂,它的思路是利用中序遍历,所以首先产生了一个假的根结点,其左子树为原来的二叉树,从假的根结点开始中序遍历

它和中序遍历有所不同,在发现当前结点左子树为空时,不访问此结点(后序遍历需要保证访问完右子树后才能访问根结点),直接访问右子树。

第二次遍历到某个结点时,将该结点左子树的最右路径反序输出即可,对应函数为bst_morris_reverse


展开阅读全文

没有更多推荐了,返回首页