算法排序之希尔排序
基本思想
①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。
②当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。
③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
因此,希尔排序在效率上较直接插人排序有较大的改进。
步长选择
Donald Shell 最初建议步长选择为并且对步长取半直到步长达到 1。虽然这样取可以比类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。 可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就不会以如此短的时间完成排序了。
步长串行 | 最坏情况下复杂度 |
---|---|
已知的最好步长串行是由Sedgewick提出的 (1, 5, 19, 41, 109,...),该串行的项来自 9 * 4^i - 9 * 2^i + 1 和 4^i - 3 * 2^i + 1 这两个算式.这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长串行的希尔排序比插入排序和堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。
另一个在大数组中表现优异的步长串行是(斐波那契数列除去0和1将剩余的数以黄金分区比的两倍的幂进行运算得到的数列):(1, 9, 34, 182, 836, 4025, 19001, 90358, 428481, 2034035, 9651787, 45806244, 217378076, 1031612713, …)
希尔排序动画模拟以及动态图演示
动画演示:
假设待排序文件有10个记录,其关键字分别是: 49,38,65,97,76,13,27,49,55,04。
增量序列的取值依次为: 5,3,1
排序过程如【动画模拟演示】
动态图:
伪码实现
input: an array a of length n with array elements numbered 0 to n − 1
inc ← round(n/2)
while inc > 0 do:
for i = inc .. n − 1 do:
temp ← a[i]
j ← i
while j ≥ inc and a[j − inc] > temp do:
a[j] ← a[j − inc]
j ← j − inc
a[j] ← temp
inc ← round(inc / 2.2)
算法C语言实现
/**
* 希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长
* 最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插
* 入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些!
* 希尔排序时间复杂度为O(nlog(n)) ~ O(n ^ 2)
*/
#include <stdio.h>
void shell_sort(int array[], int n)
{
// increment为步长
int tmp, i, j, increment;
for(increment = n / 2; increment > 0; increment /= 2)
{
//下面为插入排序,最坏时间复杂度为O(n^2)!
for(i = increment; i < n; ++i)
{
tmp = array[i];
for(j = i; j > 0 && tmp < array[j - increment]; j -= increment)
{
array[j] = array[j - increment];
}
array[j] = tmp;
}
}
}
测试main函数
int main()
{
int array[] = {34,25,56,1,-1,-45};
shell_sort(array, 6);
for(int i = 0; i < 6; ++i)
printf("%d ", array[i]);
return 0;
}