微众银行李辉忠:数据安全问题变迁,呼唤隐私计算入场

为响应深圳数据要素市场培育,真正落实《数据安全法》,FISCO金链盟联合深圳市金融科技协会举办“湾区金科(FinTech)沙龙(第十三期)——数据安全法专场”线上活动。微众银行区块链隐私计算技术负责人李辉忠受邀参加沙龙,并做题为《数据安全文化变迁,呼唤隐私计算入场》的分享。

   三个维度上的重要影响

6月10日,第十三届全国人大常委会第二十九次会议正式通过《中华人民共和国数据安全法》(以下简称《数据安全法》)。而在立法之前,国务院就发布《中共中央国务院关于构建更加完善的要素市场化配置的体制机制的意见》,将数据定义为继土地、劳动力、资本、技术之后的第五大生产要素。毫无疑问,数字时代已经来临。数据作为重要的生产要素,将会在未来的生活、技术应用方面发挥更为重要的作用。

根据《数据安全法》,数据安全是指通过采取必要措施,确保数据有效保护和合法利用的状态,以及具备保障持续安全的能力。其中,“有效保护”是指对于数据,不仅要保护起来,更要合法地去利用,去挖掘数据的价值,并持续保证它的安全能力。

随着对《数据安全法》的深入研究,不难发现它在规范数据安全管理、鼓励数据价值释放、推动政务数据开放这三个维度上产生了重要影响。首先,《数据安全法》对数据安全的管理机制进行了全面的规范。从数据收集、存储、使用、直至公开,数据处理的全流程都必须要确保数据安全。

并且,《数据安全法》对于这些规范提出了不断细化的要求,明确提出了数据分类分级保护制度,并对数据安全评估、监测预警制度,数据应急处置制度以及数据出口管制等均有明确要求。

其次,《数据安全法》鼓励挖掘数据的价值,积极构建数据安全和产业发展相互推动的双循环。其指出要通过数据安全机制来推动数据的合法利用和产业发展,同时通过产业的发展和数据的利用倒推对数据安全的更加完善的管理机制。

其中,《数据安全法》明确鼓励对于数据的依法合理且有效地利用,保障数据依法有序地自由流动,促进经济的发展。此外,鼓励数据在各行业、各领域的创新应用,支持通过开发利用数据来提升公共服务和提升社会智能化的水平,并且鼓励健全数据交易制度,培育数据交易市场。

再则,《数据安全法》助力推动政务数据开放。数据通常被归为两大类,分别是与个人相关的数据和与政务、机构相关的数据。《个人信息保护法》对于个人信息有着严格的规定,要求保护个人信息不被泄露。然而对于政务数据,法律对此一向持比较开放的态度,即鼓励政务数据及时准确地公开,制定政务数据的开放目录,构建统一规范、互联互通、安全可控的政务数据开放平台,并鼓励把政务数据给到更多的商业机构使用。

总之,该法不仅规定了数据安全应该如何做,还提倡实现数据更好地流动,以便更好地服务于经济发展。与此同时,我们也需要有不断更新的技术和创新应用来使用这些数据。

   数据流动引发数据安全问题变迁

数据的自由流动会引起数据安全问题的变迁。首先是数据的确权问题。数据只有在确权状态下,才能实现自由流动,否则会带来数据的大量复制。其次,在引入数据交易后,交易环节中的激励以及整体体系的设计、数据定价问题都是全新的问题。最后,数据一旦离开机构,或者与其他机构合作过程中,隐私问题都难以回避。比如说金融机构的风控模型,或基于运营数据所得出的模型、参数等都是极为敏感的数据,如果该模型与其他机构展开合作,则有可能发生隐私泄露的风险。

数字时代,我们需要打破一个认知。做技术的人普遍认同“程序=数据+算法”,但其实上,在新的数字时代下,随着法律的健全,随着个人对隐私的越发重视和认知的升级,未来不论是金融服务还是互联网服务、民生服务,可能都要呈现为 “服务=数据+算法+合规”。因而,也引来一个新的问题:在合规的前提下,如何利用好这些数据?这也意味着,在新的数字时代,公式发生了变化,“程序=数据+算法+合规”可能更为准确。

   隐私计算助力依法合规使用数据

从技术角度来看,隐私计算是解决合规使用数据的一项技术。过去,使用数据的方式比较粗犷,甚至可能存在数据滥用的情况。如今,已经立法,很多数据无法再通过传统的技术来获得,否则存在违背法律法规的风险。隐私计算则能够满足数据的自由流动、挖掘数据价值,使得数据无需离开机构,仍能实现机构与机构之间的协作。

从隐私计算核心能力来看,隐私计算体系里共涉及三个关键技术支撑:区块链、联邦学习和安全多方计算。

区块链承担了构建数据互信的机制,有效实现分布式协作模式。区块链本身具有多中心、分布式以及不可篡改、智能合约的特性,能够更好地应用于数据确权、行为追踪、数据使用、人员管理以及全生命周期授权管理等。

联邦学习,可以将分布在多个机构之间的数据,在不出库的情况下进行联合学习、建模和预测,充分应用多方异构数据建立更好的模式,为用户提供优质服务。比如在营销场景中,有些金融机构手中的营业数据较为单一,但结合电商采购的行为数据、社交的行为数据,则可以更好地为用户建模。

安全多方计算,本质上是利用密码学和分布式特性来实现在交互过程中,让交互的个人或者机构达到身份和行为的匿名,或者无需透漏数据的明文与对方完成协作。比如,三方之间有一份合同协议,通过各自贡献的一部分数据来参与计算。但是数据不能出明文,也就是在密态情况下,通过安全多方计算技术得到最终的计算结果。

   微众银行在隐私计算上的探索成果

近些年,微众银行深耕隐私计算,在三大技术支撑方面均收获了丰富的成果。

在区块链方面,FISCO BCOS是由微众银行牵头研发的国产安全可控联盟链底层平台。该平台在国内得到了高度认可,2018年荣获深圳市金融科技专项奖一等奖,成为国家信息中心顶层设计的区块链服务网络BSN中首个国产联盟链底层框架。目前,基于FISCO BCOS构建的联盟生态圈,已有2千多家企业机构,4万多名社区成员。FISCO BCOS可以作为隐私计算方向上的区块链支撑,成为数据被有效利用、合规利用的基础设施。

微众银行不仅牵头建设了FISCO BCOS这一底层平台,还构建了面向数据要素市场的全栈技术体系,如分布式身份、跨链隐私保护、智能合约等。

此外,对于联邦学习和安全多方计算,微众银行也都有相应的攻关成果,如联邦学习的开源框架FATE,在安全多方计算方面,微众银行给出了场景式的隐私保护解决方案WeDPR。

很多场景如果采用通用技术,或者通过安全多方甚至密码学的技术去解决,可能会遇到性能上的问题。但如果针对特定的场景,去设计定制化的解决方案,则可以最大化地优化其性能,服务于商业场景的落地。WeDPR应用场景矩阵中的多方密文决策便是很好的一个示例:如在投票中,很多人并不希望被他人知晓自己的票投给了哪位候选人、投了多少票以及权重是多少等信息,隐私投票可以实现在密态状态投票的同时保证过程和最终结果的可验证性。

微众银行还发布了自主研发的多方大数据隐私计算平台WeDPR-PPC。该平台结合区块链和安全多方计算的优势,实现在确权、授权和维权的全生命周期管理下,达到多方数据的联合预测、联合建模等。

在工信部信通院最新一批“中国信通院大数据产品能力评测”中, WeDPR-PPC首批通过“区块链辅助的隐私计算产品”权威评测,其安全性、性能、功能全面符合国家级测试标准。

上述提及的都是技术,技术不可避免的要面对应用场景的问题。随着《数据安全法》颁布后,要合规地使用数据,那么合规使用的场景是怎么样的呢?

在保护数据的安全和数据隐私情况下,数据的协同是双循环的,即在个人和机构之间有数据的循环。从应用场景角度来看,隐私数据的协同也包含了个人和机构、机构和机构之间的双循环。

第一种,个人数据的应用,比如说用户在访问任何一个APP时,用户与APP之间会产生交互,用户很多时候会被迫披露数据,那么一系列与用户相关的数据就到了APP所在的机构。当下,我们去到许多地方都需要出示健康码,甚至一些场所需要出示证件信息,这也意味着,我们给出的信息太多、太泛滥。在未来,我们不应该让这些机构收集如此多的个人信息。结合密码学技术,用户可以选择性地披露信息而不需要将所有信息明文交付。

第二种,机构间的数据协同。比如,为了做联合营销、广告,机构与机构之间存在数据的流动。广告主和广告平台在投放广告时常会有如下需求:为了让广告达到更好的效果,模型需要结合多维数据进行精准投放。但随着《数据安全法》落地后,第三方平台不能给出明文,广告投放方就无法得到多维数据。通过联邦学习、安全多方计算技术,则可以实现数据在不出库的情况下,让模型在数据上运行,并且基于区块链技术,可实现数据使用过程的可追溯,同时,在数据不出库下进行联合建模,实现联合营销效果。

总之,在不久的未来,我们可以通过隐私保护技术提供一种机制或是一种思路,解决在相关法规趋严的情况下,更好地挖掘数据价值,释放数据的生产力。

  • 0
    点赞
  • 1
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值