Pytorch 入门与实践
深度模型pytorch入门与实践课程
wvdon
先做好一件事,才能做好更多事
展开
-
沐神的 《动手学深度学习》 课程中的 3.3. 线性回归的简洁实现
沐神的 《动手学深度学习》 3.3. 线性回归的简洁实现有很多需要学习的地方。模型分为,数据输入,转换为tensorData, 加载打乱(data)## 造数据import torchfrom torch.utils import datafrom torch import nndef synthetic_data(w,b,num_examples): X = torch.normal(0,1,(num_examples,len(w))) y = torch.matmul(原创 2022-01-23 01:46:01 · 839 阅读 · 0 评论 -
沐神的 《动手学深度学习》 课程中的 3.2节 线性回归的从零实现
线性回归从0实现代码的实现需要这么几个过程。数据读入随机打乱的数据,然后要分epoch。定义我们的模型,损失函数,优化算法定义好超参数开始 for epoch …这个过程需要根据超参数,predict pre_label,然后计算出损失的反向传播,根据优化算法去更新参数。最后记得打印每次的loss,acc,auc等参数。我们读取 ⼀小批量训练样本,并通过我们的模型来获得⼀组预测。 计算完损失后,我们开始反向传播,存储每个参数 的梯度。最后, 我们调⽤优化算法sgd来更新模型参数构造数据原创 2022-01-23 00:35:13 · 1034 阅读 · 1 评论 -
pytorch-mul(),matmul()及torch.mm()
参考:torch.matmul()用法介绍原创 2022-01-22 19:51:22 · 880 阅读 · 0 评论 -
Pytorch-如何使用GPU进行训练
默认你已经安装了cuda,并且支持GPU。# is_available 函数判断是否有cuda可以使用# ``torch.device``将张量移动到指定的设备中if torch.cuda.is_available(): device = torch.device("cuda") # a CUDA 设备对象 y = torch.ones_like(x, de...原创 2020-02-13 19:26:35 · 9349 阅读 · 4 评论