
深度学习
夜猫子科黎
这个作者很懒,什么都没留下…
展开
-
Paddle-图像分割从入门到实践
文章目录预习day1:图像分割综述day2: FCN全卷积详解day3:U-Netday4:DeepLabday5:图卷积day6:实例与全景分割day7:课程总结与paddle_seg介绍学习链接预习day1:图像分割综述day2: FCN全卷积详解day3:U-Netday4:DeepLabday5:图卷积day6:实例与全景分割day7:课程总结与paddle_seg介绍这几天学习了图像分割的基础及前沿知识,掌握了如何使用paddle构建FCN以及U-NET以及PS原创 2020-10-26 12:23:39 · 627 阅读 · 0 评论 -
小结8:图像分类案例2,GAN、DCGAN
文章目录图像分类案例2:获取数据集数据增强读取数据定义模型定义训练函数略微调参训练模型测试 提交结果图像分类案例2:kaggle 狗识别获取数据集比赛的网址是https://www.kaggle.com/c/dog-breed-identification 在这项比赛中,我们尝试确定120种不同的狗。该比赛中使用的数据集实际上是著名的ImageNet数据集的子集。我们可以从比赛网址上下载...原创 2020-02-25 22:40:58 · 1860 阅读 · 4 评论 -
小结7:目标检测基础、图像风格迁移、图像分类案例1
文章目录目标检测基础边界框瞄框交并比图像风格迁移图像分类案例1图像增强训练测试目标检测基础边界框包含 x,y,w,h瞄框标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素...原创 2020-02-25 22:25:08 · 677 阅读 · 0 评论 -
小结6:批量归一化和残差网络、凸优化、梯度下降
文章目录批量归一化对输入的标准化(浅层模型)批量归一化(深度模型)残差网络稠密连接DenseNet凸优化梯度下降一维梯度下降多维梯度下降自适应方法随机梯度下降批量归一化对输入的标准化(浅层模型)处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近批量归一化(深度模型)利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网...原创 2020-02-25 22:00:59 · 256 阅读 · 0 评论 -
小结5:卷积神经网络基础、LeNet、卷积神经网络进阶
文章目录卷积神经网络基础二维卷积层padding以及stride对特征图影响stridekernel参数LeNet卷积神经网络进阶AlexNetVGGNiN(network in network)GoogleNet卷积神经网络基础本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。二维卷积层本节介绍的是最常见的二维卷积层,常用于处理图像数据...原创 2020-02-19 17:40:17 · 299 阅读 · 0 评论 -
小结3:过拟合欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
文章目录过拟合、欠拟合及其解决方法过拟合问题(high variance)欠拟合问题(high bias)梯度消失及梯度爆炸循环网络进阶过拟合、欠拟合及其解决方法过拟合问题(high variance)过拟合问题:是指模型太过复杂,对训练数据效果好,而对新样本泛化能力较弱。(训练误差低 验证误差高)产生过拟合的可能原因,可能为其中之一或者都有:模型的复杂度过高。如网络太深,神经网络中...原创 2020-02-19 16:17:19 · 419 阅读 · 0 评论 -
小结4:机器翻译相关技术、注意力机制
文章目录机器翻译(MT):1 定义2 Encoder-Decoder3 Seq2Seq4 Beam search机器翻译(MT):1 定义将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。步骤:数据清洗分词建立词典建立mini-batch(记得pad...原创 2020-02-19 12:38:32 · 328 阅读 · 0 评论 -
使用服务器上的tensorflow在pycharm中无法加载
ImportError: libcublas.so.10.0: cannot open shared object file: No such file or directoryFailed to load the native TensorFlow runtime.Run->添加LD_LIBRAY_PATH 路径:/usr/local/cuda/lib64...原创 2019-05-27 21:34:30 · 590 阅读 · 0 评论 -
task7:pytorch实现mnist手写字体识别
task7:pytorch实现mnist手写字体识别1 导入库2 定义网络3 定义训练及测试函数4 主程序1 导入库from __future__ import print_functionimport argparse import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim...原创 2019-04-18 15:17:32 · 1040 阅读 · 0 评论 -
task6:pytorch神经网络优化方法--optim
pytorch优化器 optim各种优化方法介绍一、梯度下降1.1 批梯度下降法(Batch Gradient Descent)1.2 随机梯度下降1.3 小批量梯度下降参考:https://www.leiphone.com/news/201709/c7nM342MTsWgau9f.htmlhttps://www.cnblogs.com/lliuye/p/9451903.html各种优化方...原创 2019-04-16 16:48:53 · 1187 阅读 · 0 评论 -
task5:Pytorch实现dropout及L1,L2正则化
task5:pytorch实现dropout及L1,L2正则化1 dropout1.1 Drop出现原因1.2 numpy举例2 pytorch实现dropout3 pytorch添加L1及L2正则化3.1 L1及L2介绍3.2 代码1 dropout部分转自:https://blog.csdn.net/program_developer/article/details/807377241...原创 2019-04-13 15:52:26 · 18009 阅读 · 3 评论 -
task4: 多层神经网络--pytorch实现
多层神经网络pytorch实现一、画个图(跟主题无关哈)2 搭建多层神经网络2.1 导入库2.2 读取数据集2.3 搭建多层神经网络2.4 实例化类2.5 定义损失函数及优化器2.6 训练一、画个图(跟主题无关哈)import numpy as npimport matplotlib.pyplot as pltm =200 X =np.random.randn(2,m) #产生2*20...原创 2019-04-11 17:04:33 · 3903 阅读 · 2 评论 -
task2:使用numpy或者pytorch进行简单梯度下降
简单梯度下降一、对y=x^2 +2*x+1进行梯度下降1.1 用python1.2 使用pytorch二、python+numpy拟合简单曲线 y=2*x三、pytorch拟合简单曲线四、pytorch简单线性类y=cx一、对y=x^2 +2*x+1进行梯度下降1.1 用pythonx =1 learning_rate =0.1 #学习率epoches =10y =lambda x:...原创 2019-04-07 18:37:11 · 563 阅读 · 0 评论 -
task1:pytorch入门-60分钟了解系列之一
pytorch的基本概念一、 pytorch介绍1.1 什么是pytorch1.2 为什么选择pytorch二、pytorch安装2.1 anaconda下载与安装2.2 环境配置2.3 环境测试三、pytorch基础知识3.1 A 60 MINUTE BLITZ(60分钟快速了解)1.2 基本操作(加、减等)1.3 Numpy 和Tensor转换1.4 Numpy 转换为Tensor1.5 C...原创 2019-04-06 10:42:41 · 474 阅读 · 0 评论 -
task3-pytorch实现逻辑回归
pytorch实现逻辑回归一 、逻辑回归简单介绍1.1 逻辑回归原理1.2 损失函数2.1 导入相关库2.2 导入数据三 方法1:直接使用logistic regression(逻辑回归)定义+pytorch梯度计算3.1 初始化3.2 训练4 方法2:使用神经网络方法4.1 导入相关库4.2 定义模型4.3 训练一 、逻辑回归简单介绍逻辑回归虽然叫做回归,但是其主要解决分类问题。可用于二分类...原创 2019-04-10 12:51:52 · 766 阅读 · 0 评论