DevOps笔记-05:IT行业中BA、SM、PO、PM、PD、Dev、Ops、QA都是什么角色

本文介绍了互联网公司中的关键角色,包括BA(业务分析师)、SM(Scrum Master)、PO(产品负责人)、PM(项目经理)等。BA作为业务和IT的桥梁,负责需求分析和技术评估;SM确保团队遵循Scrum流程,解决开发障碍;PO负责最大化产品价值,制定开发计划;PM则管理产品需求和研发。此外,还提及了PD(产品设计)、Dev(开发)、Ops(运维)和QA(质量保证)的角色职责。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、BA

    (1)定义

BA是Business Analys缩写,即业务需求分析师。在互联网公司里,BA的角色就是产品经(PM),只是BA要承接某个很具体的业务或者领域,比如银行也有自己的IT部门,银行IT里的产品经理可能要对接专门的业务组,比如网银业务,信用卡业务,理财产品业务,基金代理业务,这样承接某个具体业务需求的产品经理就叫BA。
    (2)职责

BA是业务和IT之间联系的纽带,主要职责如下:
    1)懂技术,了解IT的开发流程
    2)了解系统的架构和设计,能对项目的可实现性快速做出评估
    3)了解该领域的行业知识,能在项目开始谈论的初期就做出更好的预判
    4)要能和业务一起沟通,谈需求,谈市场,厘清规则,设计出解决方案
    5)会分享,能回到开发团队中,跟大家分享业务要点,设计思路,并帮着解决所有开发中的业务相关问题

2、SM

    (1)定义

  SM是Scrum Master缩写,是团队的导师和组织者。促使team按照scrum方式运行,为Scrum过程负责的人。
    (2)职责

Scrum Master并非团队的领导,而是一个负责屏蔽外界对开发团队干扰的角色,他是规则的执行者,是Scrum团队中的服务型领导。
    SM主要职责如下:
    1)保证团队资源合理利用
    2)保证各个角色及职责良好协作
    3)解决团队开发中的障碍
    4)作为团队和团队外部的接口,协调解决沟通中的问题
    5)保证开发过程按计划进行,组织Scrum Planning Meetings(Sprint计划会议), Daily Stand-up Meeting(每日站会), Sprint Review Meeting(Sprint评审会)和 Sprint Retrospective Meeting(Sprint回顾会)

3、PO

    (1)定义

PO可以是Product Owner的缩写,即产品或业务负责人。PO也可以是Product Operation的缩写,即产品运营。

    (2)职责

 PO最大的职责是最大化产品价值。他主要负责制定计划,督促开发完成feature,完成交付任务。他需要熟悉产品所有相关的逻辑、流程等方面的事宜。一般由项目经理或熟悉业务的开发人员担任。
   

4、PM

(1)定义:PM是Project Manager的缩写,即项目经理。

(2)职责:它主要负责管理产品的需求和研发。

5、PD

    (1)定义:PD是Product Design的缩写,即产品设计。

6、Dev

    (1)定义:Dev是Development的缩写,即开发

7、Ops

    (1)定义:Ops是Operation的缩写,即IT运维技术人员。

8、QA

    (1)定义: QA是Quality Assurance的缩写,即质量保证(测试)。

### SA (Spatial Attention) 和 SE (Squeeze and Excitation) 注意力机制的概念 #### 概念定义 SA(Spatial Attention)主要关注特征图的空间维度,通过捕捉空间上的重要区域来增强模型的表现能力[^1]。它通常通过对输入特征图的不同位置赋予不同的权重,从而突出重要的空间区域并抑制不相关的部分。 SE(Squeeze and Excitation)则专注于通道间的依赖关系,其核心思想是对不同通道的重要性进行建模,进而调整各个通道的贡献程度[^2]。具体来说,SE模块会先全局池化获取每个通道的信息摘要,再通过非线性变换计算出各通道的权重系数,最后乘回原特征图上完成自适应校正。 --- ### 实现方法对比 #### Spatial Attention 的实现方式 在 ShuffleAttention 中提到的 SA 方法可以通过以下步骤实现: 1. **生成空间注意力图**:利用卷积操作提取输入特征图的空间分布特性,并将其转换为一个二值掩码矩阵。 2. **融合原始特征图与注意力图**:将上述得到的空间注意力图与原始特征图相乘,使得更重要的空间区域被放大而无关紧要的部分受到削弱。 以下是基于 PyTorch 的一种简单实现形式: ```python import torch.nn as nn class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = torch.cat([avg_out, max_out], dim=1) scale = self.conv(scale) return x * self.sigmoid(scale) ``` #### Squeeze-and-Excitation 的实现方式 对于 SE 来说,则遵循如下流程构建该模块: 1. **压缩阶段**:采用全局平均池化的方式减少数据冗余度,获得紧凑型描述符; 2. **激励阶段**:借助全连接层学习到每条路径下的激活强度比例因子; 3. **重标定过程**:把之前求得的比例重新作用于初始输入之上形成最终输出。 下面给出一段 Python 编程实例演示如何搭建 SE 结构单元: ```python import torch.nn.functional as F class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) ``` --- ### 主要区别总结 | 特性 | SA (Spatial Attention) | SE (Squeeze and Excitation) | |--------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | 关注重点 | 聚焦于图像中的特定区域或像素点 | 集中处理不同特征映射之间的相互联系 | | 输入/输出结构 | 接收多维张量作为入口参数 | 同样接收高阶数组形式的数据 | | 计算复杂度 | 较低,因为仅涉及局部邻域内的运算 | 稍微偏高一点,由于引入额外的一系列密集神经网络节点 | | 应用场景举例 | 可用于目标检测、语义分割等领域提高定位精度 | 更适合分类任务下优化整体性能表现 | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏波.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值