派可数据的博客

派可数据一站式企业级BI可视化分析平台

  • 博客(673)
  • 收藏
  • 关注

原创 派可数据:解锁数据潜力,驱动业务价值新增长

财务及业务领导的经营管理驾驶仓,从财务监管的收入、成本、费用、利润、资产、资金的角度,以延伸至业务的客户、供应商、产品、市场渠道等多维度全景视角,深度洞察企业经营管理数据,助力企业优化业务流程、促进数据驱动业务的逐步升级,有效提升企业的数字化运作能力,以持续提高企业核心竞争力。派可数据分析平台,利用分布式微服务、大数据、人工智能等新技术、新应用,在企业经营管理决策上,全方位、全领域、全流程的集成各类系统数据、各类设备数据、各类事务、日志数据、各类音、视频数据,并针对性的进行业务模型、

2024-09-23 09:49:22 1228

原创 关于实时数仓的几点技术分享

其中对 Binlog 日志的处理主要是完成库或者实例日志到表日志的拆分,对流量日志主要是做一些通用 ETL 处理,由于我们使用的是同一套 PB 结构,对不同 App 数据处理的逻辑代码可以完全复用,这大大降低了我们的开发成本。的场景主要是满足带 Update 操作且 OPS 较高的需求,例如:实时统计全站所有内容(问题、答案、文章等)的累计 PV 数,由于浏览内容产生大量的 PV 日志,可能高达几万或者几十万每秒,需要对每一条内容的 PV 进行实时累加,这种场景下选用 Redis 更为合适。

2024-09-18 10:33:09 1116

原创 浅谈OLTP 与 OLAP 数据建模的差异

与:常见工作流(OLAP) 和联机事务处理 (OLTP) 是两种主要的数据处理系统。两者之间存在多种差异。OLTP 系统旨在处理来自多个用户的多个事务,它们通常用于许多应用程序的后端。例如,在线商务网站将使用 OLTP 系统来收集和显示用户/商品信息。当用户登录时,客户端会从 OLTP 系统获取用户的数据以显示在前端。当用户购买某件商品时,OLTP 系统中的订单表将添加一行。当商家更改其某件商品的信息时,新信息将在后端的商品表中更新。因此,这些系统针对每次对少量行执行。

2024-09-09 11:48:21 1301

原创 数据清洗的概念、常见问题及实践方法

数据已成为企业和组织决策的重要依据,然而,原始数据往往存在各种质量问题,如缺失值、错误值、重复数据等,这些问题严重影响了数据分析的准确性和可靠性。数据清洗作为的关键环节,能够有效地解决这些问题,为后续的数据分析和挖掘打下坚实的基础。今天,让我们一起了解数据清洗的概念、常见问题及实践方法。

2024-09-03 09:38:02 801

原创 浅谈数据资源、数据产品、数据资产三者的异同

数据成为生产要素已是社会共识,但不是所有数据都有资产价值。数据资源当中被重复使用的那部分才会资产化,具有流通中的定价,有些数据资产被专业开发变成数据产品,具有商品价值。从数据原始资源到数据产品,再到数据资产,是数据要素价值释放的路径。今天和大家详细聊聊数据原始资源、数据产品、数据资产三者的异同。

2024-08-26 15:03:06 911

原创 数据资产入表,全流程实施指南!

数据成为生产要素已是社会共识,但不是所有数据都有资产价值。数据资源当中被重复使用的那部分才会资产化,具有流通中的定价,有些数据资产被专业开发变成数据产品,具有商品价值。从数据原始资源到数据产品,再到数据资产,是数据要素价值释放的路径。今天和大家详细聊聊数据原始资源、数据产品、数据资产三者的异同。

2024-08-21 09:35:34 1387

原创 数据资产管理:管、存、算、规、治

俗话说“巧妇难为无米之炊”,要做好数据分析,先要找到“好米”,也就是“好数据”。如何获取数据,又怎么能在数据中找到真正有用的“好数据”,是数据分析需要重点关注的问题。据研究表明,在数据分析的整个过程中,。怎样把数据收集起来,并确保数据可直接用于分析展示,是最麻烦、最耗时的事情,这在企业级的数据分析中也被称为是“最脏最累”的活。倘若数据未处理妥当,炫酷好看的可视化展示也毫无意义。如果你参与过大型企业BI系统的建设,那就一定能有所感触。

2024-08-12 10:12:55 611

原创 售前到底需要什么能力?一起来蹚一蹚售前的路!

我们需要良好的素质,诸如学习力(售前必须快速学习各种本领,并快速变现)、抗压力(面对各种压力面不改色,不要心虚,我觉得有些售前老是一副谨小慎微的样子,这样不好,可以向工程师,销售学习,敢于狂放,也敢于自嘲,敢于自黑,须知这也是我们历练的一部分,售前文化氛围亟待大家的建设。这一层,我对售前的要求是能对我们的技术应用,和产品架构理解到原子级,话句话说,我们能从浩瀚的方案里随便撕下一个极小的名词片段还是一个特性上的指标,我们都要知其然,知其所以然,只有这样我们才能精准的解决客户问题。这样,我们的方案才有价值。

2024-08-05 11:21:43 996

原创 200+财务数据分析数据指标归纳总结,建议收藏!

很多人问,财务分析要看哪些指标?问这个问题,说明你本身对财务分析看得比较机械化,认为财务分析就是冲着那几个固定的指标去的,把那几个指标算出来,财务分析就完成了。其次,

2024-07-30 09:30:01 548

原创 派可数据 助力制造企业数字化生产管理新能力提升

通过数字化生产管理解决方案,企业能够实现生产过程的全面可视化、实时监控,优化资源分配,提高生产效率,降低成本,提升产品质量,加强对生产过程的掌控,从而更好地满足市场需求和提高竞争力。现代生产管理的挑战和机遇,以数字化转型如何为企业提供更高效、智能化的生产管理解决方案为核心,派可数据以制造企业生产管理的特性,以数据为要素,以问题为导向,构建了数字化生产管理的数据模型,以展示数字化转型在生产管理领域的落地效果。数字化生产管理不仅关注生产线上的机械运作,还包括数据的采集、分析和决策,以及生产计划的优化。

2024-07-26 11:05:26 778

原创 详解大厂实时数仓建设方案

目前各大公司的产品需求和内部决策对于数据实时性的要求越来越迫切,需要实时数仓的能力来赋能。传统离线数仓的数据时效性是 T+1,调度频率以天为单位,无法支撑实时场景的数据需求。即使能将调度频率设置成小时,也只能解决部分时效性要求不高的场景,对于实效性要求很高的场景还是无法优雅的支撑。因此实时使用数据的问题必须得到有效解决。实时计算框架已经经历了三代发展,分别是:Storm、SparkStreaming、Flink,计算框架越来越成熟。一方面,实时任务的开发已经能通过编写 SQL 的方式来完成,在技术层面能很好

2024-07-22 10:11:04 770

原创 数字化时代下,财务共享数据分析建设之路

财务共享中心建设为财务分析奠定了高质量的数据基础,在此基础之上,为更好地提升财务数据的价值创造,派可数据通过对多源系统的采集整合,搭建业财融合数据系统,把分散在各个系统里的数据集中存放在统一的“数据仓库”中,统一数据标准、实现数据融合,为企业高层领导、业务部室提供及时、准确、全面的业财融合数据分析的服务。企业通过建立完善的数据共享,能够让数据在企业内外更好得流通,把数据资产的价值最大化,让各部门、业务线都能进行利用,避免重复收集数据,分析数据不全面等。企业数据来源与数据边界。

2024-07-09 17:03:55 806

原创 两个指标引领化工行业经营管理数字化

2024年,工业和信息化部等9部门联合发布了《原材料工业数字化转型工作方案(2024—2026年)》,《方案》所附《石化化工行业数字化转型实施指南》为化工行业数字化落地推进提供了行动指南。《指南》提出了化工企业明确的数字化目标,到2026年,化工行业数字化网络化水平显著提升,数实融合持续深化,企业智能制造能力明显增强,基于工业互联网的平台服务取得积极进展,面向细分行业的人工智能引擎初步成型,由“深化应用”迈向“变革引领”,持续巩固流程工业领先地位。

2024-07-01 09:39:41 854

原创 数据平台发展史-从数据仓库数据湖到数据湖仓

所谓「数据平台,主要是指数据分析平台,其消费(分析)内部和外部其它系统生成的各种原始数据(比如券商柜台系统产生的各种交易流水数据,外部行情数据等),对这些数据进行各种分析挖掘以生成衍生数据,从而支持企业进行数据驱动的决策」数据分析平台,需要上游系统(内部或外部)提供原始数据;- 数据分析平台,会经过分析生成各种结果数据(衍生数据);

2024-06-25 09:17:56 1366

原创 装备制造行业数据分析指标体系

数字化飞速发展的时代,多品种、定制化的产品需求、越来越短的产品生命周期、完善的售后服务、极佳的客户体验和快速的交货速度等,使得装备制造行业的经营环境越来越复杂,企业竞争从拼产品、拼价格迈向拼服务,装备制造企业正处于数字化转型的关键节点。如何解决装备制造行业痛、难点问题?顺应数字经济发展趋势,推动装备制造行业数字化转型,从关键生产流程入手,着力解决好数字化转型进程中的痛点和难点问题,重构企业核心竞争力是企业的核心课题。

2024-06-19 16:35:33 1205

原创 工业企业的物料主数据管理应该如何做?

集团型制造企业要实现物料主数据的统一管控,必须打破固有的管理模式,建立新的体系,实现采购集中、销售集中、财务集中,从而降低生产成本,给公司带来更大的利润。同时,物料主数据是ERP的核心数据,是企业制定主生产计划和库存记录文件,物料主数据的直接关乎采购、库存、销售等业务,一旦出现问题将会导致库存积压,销售产品账实不符,财务核算不准确等问题。确定物料的分类体系、编码标准和主属性模型标准,提高物料主数据的标准化水平,将物料的基本信息,如物料类型、规格、型号、材质、采购属性、库存属性等信息的统一。

2024-06-13 14:08:00 983

原创 数据仓库建设之数据质量管理

从一线业务执行产生数据存储,调取数据进行分析,再到分析结果对业务执行产生影响,这是一个完整的闭环流程,不管中间哪个环节出现问题都会影响到全部,更别提贯穿前后的数据,一旦数据质量出现问题,所产生的数据分析将直接影响业务执行,进而阻碍企业发展。虽然在企业经营活动中会产生很多业务数据,但这些未经处理过的数据很多都是对企业发展无效的。想要在数据库海量的数据中寻找某种数据,实现相关业务数据的快速查询,最关键的就是数据唯一性,它不仅可以在数据库中帮助识别重复数据,还能轻松获取企业业务的复盘数据,帮助管理人员更好决策。

2024-06-07 10:19:15 983

原创 企业上了数字化工具,却觉得没价值,问题在哪?

随着数字化时代的来临,数字化转型已经成为了企业发展的重要方向,通常我们企业会把数字化转型看作企业降本增效,并形成发展的第二曲线的重要手段,企业界也普遍认识到数字化工具的重要性。然而,许多企业在应用数字化工具时并未取得预期的成效。这引发了一个值得深思的问题:为什么很多企业使用数字化工具却未能充分发挥其潜力?这个问题背后隐藏着许多挑战和障碍,需要我们深入剖析并提出解决方案。首先,回顾一下数字化工具的发展历程。从最早的电子表格到今天的智能分析系统,数字化工具一直在不断演进,为企业提供了更高效的管理和运营方式。

2024-05-31 18:08:45 990

原创 详解:企业数据资产入表路径及方法

由此可见,数据资源的合规与确权是数据资源入表的首要步骤。作为全球领先的全球专业服务机构,普华永道在数据评估领域亦开展了深入的实践探索,并早在2021年7月形成了实证突破,借用物理学中的“重力势能”概念,首次提出创新的“数据势能”概念并进行相关实证探究,并在后续的研究与企业场景实践中,基于成本及收益途径不断完善数据资产价值评估方法与相应模型的设计利用,使得普华永道“数据势能模型”的价值评估框架可以广泛运用于不同类型、不同阶段的数据资产价值评估场景中,助力企业更好地开展数据资产价值评估工作。

2024-05-30 09:57:14 890

原创 派可数据助力制造企业数字化生产管理新能力提升

通过数字化生产管理解决方案,企业能够实现生产过程的全面可视化、实时监控,优化资源分配,提高生产效率,降低成本,提升产品质量,加强对生产过程的掌控,从而更好地满足市场需求和提高竞争力。现代生产管理的挑战和机遇,以数字化转型如何为企业提供更高效、智能化的生产管理解决方案为核心,派可数据以制造企业生产管理的特性,以数据为要素,以问题为导向,构建了数字化生产管理的数据模型,以展示数字化转型在生产管理领域的落地效果。数字化生产管理不仅关注生产线上的机械运作,还包括数据的采集、分析和决策,以及生产计划的优化。

2024-05-24 17:21:49 929

原创 2024年31省市数字政府建设工作重点

开展数字便民利企行动,扩大“疆内通办”“跨省通办”范围,推动更多高频政务服务事项提供延时服务,推进不动产登记“带押过户”。2024年,江西省将提升履职效能,建成省级数字政府决策指挥平台,推动“赣服通”“赣政通”迭代升级,打造“赣企通”企业综合服务平台,推进跨部门联合“双随机、一公开”监管,提高数字化履职能力。实施新一轮营商环境创新提升行动,健全“高效办成一件事”常态化推进机制,畅通“面对面会商”“省长直通车”等渠道,发挥好“鲁力办”督查落实平台作用,真正做到“接诉即办”,不断提升经营主体满意度、获得感。

2024-05-24 17:10:16 1219

原创 “一利五率”数字化落地助力央国企竞争力提升

也是综合地反映出公司偿还债务的能力,资产负债率越低,公司的负债越少,自有资产越多,反之,资产负债率越高,公司的负债越多,自有资产越少。派可数据基于国资企业“一利五率”考核体系,通过管理体系与业务流程的优化机制,结合国资企业信息化管理平台,设计并搭建了全面的“一利五率”的数据分析指标,实现了考核指标体系的数字化,并进一步优化并形成国资企业的新的管理手段与工具,提升经营管理效率。该比率越高,说明营业收入质量越高,营业活动的风险越小;该比率越低,公司的经营风险越大,收益越不稳定,现金含量就越少,收益质量就越低。

2024-05-16 17:49:34 786

原创 数据中台、数据仓库、数据治理与主数据的定位与差异

它们就像一支协同作战的团队,数据中台负责调度和整合数据资源,数据仓库提供数据存储和查询支持,数据治理确保数据的安全和规范,而主数据则确保数据的准确性和一致性。数据仓库是企业数据的“图书馆”,它存储了大量的历史数据和结构化数据,并按照一定的规则和格式进行组织和存储。数据中台是企业数据的“中央厨房”,它负责整合来自各个业务部门、系统和渠道的数据,进行清洗、加工和标准化处理,然后提供给各个业务部门使用。就像中央厨房一样,数据中台确保了数据的质量、一致性和可用性,让数据能够更好地支持企业的决策和运营。

2024-05-10 16:16:19 638

原创 企业数据治理体系有哪些?如何有效保障数据治理建设?

数据治理可以有效保障数据建设过程在一个合理高效的监管体系下进行,最终提供高质量、安全、流程可追溯的业务数据。企业数据治理体系包括数据质量管理、元数据管理、主数据管理、数据资产管理、数据安全及数据标准等内容。

2024-04-29 16:16:20 984

原创 从业务经营到企业战略,构建制药企业数字化应用新能力

把大数据分析应用在众多场景,如先导化合物的探索,可以根据公开的数据库,根据分子的特性,用大量的样本来减少做分子化合物试验的时间,实验周期缩短和效率提高比较明显,效率最多可提高 30%。在社交媒体、app和在线平台进行产品营销和客户关系管理过程中,积累了大量的数据,通过对这些数据的分析,可进一步完善制药企业与客户之间的互动方式,使制药企业能够更好地理解客户需求,提供精准的个性化产品和服务,提升用户体验。S:可以说是标准,是企业的业务标准,是法规的标准等,需要有法规的框架,在企业的质量体系和标准下开展业务;

2024-04-24 16:47:57 1100 3

原创 汽车4S集团数据分析

派可数据汽车4S集团数据分析概述。派可数据汽车4S集团分析主题全面涵盖行业内各板块业务分析,具体包括:保险业务分析、客户关系分析、汽车保养情况分析、售后维修主题分析、整车销售分析、整车库存分析、装具销售分析、配件业务主题分析、二手车业务主题分析、汽车解体业务以及汽车检测业务分析等。关注派可数据,获取更多汽车行业数据分析方案。派可数据分析--汽车4S集团。

2024-04-19 15:56:08 658

原创 数据孤岛是业务效率的无声杀手

数据孤岛是一个孤立的数据存储库,不易与组织内的其他系统或部门访问或共享。当组织内的不同部门或团队拥有自己的数据库或系统来存储数据,并且没有所有数据的中央存储库时,就会出现数据孤岛。这可能会在数据可访问性、数据完整性和数据管理方面造成问题,因为很难全面了解数据或将数据有效地用于业务目的。数据孤岛还可能阻碍组织做出数据驱动决策的能力,因为数据可能不容易访问或可能难以与其他数据源集成。为了解决这些问题,组织可以实施数据集成和数据管理策略,以打破数据孤岛并促进跨部门和团队的数据共享和使用。

2024-04-19 15:54:38 1174

原创 数据要素流通机制创新 打破“数据孤岛”、释放数据价值

为了激发数据持有者的数据流通意愿,业界需要加强数据价值创新的探索和研究,提高数据利用、加工的能力,建立完善的数据管理和保护机制,确保数据的安全、合规,进而推动数据交易市场的繁荣发展。首先,通过数据整合,打破部门间的数据“壁垒”,实现数据的高效流通和共享。近年来,广东、北京、上海、浙江、贵州、福建等地相继成立数据交易所,各地数据交易所在数据确权、数据定价、数据交易、数据安全、数据增值协作等方面的监管标准与操作规范存在诸多差异,导致地方数据交易“各自为战”,无法形成统一市场,未能最大限度发挥数据价值。

2024-04-19 15:53:37 537

原创 水泥行业数据分析流程体系和相关业务场景探索

仓储画像模型系统首先具备仓储管理能力,包括针对企业生产过程中所产生的原料投入、产品消耗、原料进厂、产品出厂、各装置的投入产出等进行计量和统计,以及物料仓储库存信息等功能,实现以生产实绩的测量为依据,对空间(班组、车间、区域、分厂、集团)和时间(班次、天、周、旬、月、年)粒度范围的生产情况进行计算、统计和跟踪,功能包括生产计量、进出厂计量、物料统计以及物料跟踪。数据清洗、数据关联、数据连接、表达式(数学、时间、字符串、统计、逻辑、分析、操作符)、聚合、集合、过滤、排序、唯一标识、序号、行列转换等组件。

2024-04-15 15:21:55 671

原创 一文搞懂BI、ERP、MES、SCM、PLM、CRM、WMS、APS、SCADA、QMS

BI(商业智能分析平台)、MES(制造执行系统)、ERP(企业资源规划)、SCM(供应链管理)、WMS(仓库管理系统)、APS(高级计划和排程)、SCADA(监控控制与数据获取)、PLM(产品生命周期管理)、QMS(质量管理系统)、CRM(客户关系管理)、EAM(企业资产管理)这些系统各自针对企业的不同运营方面提供专门的管理和控制功能。在企业信息化数字化过程中我们经常遇到很多系统,比如:MES、ERP、SCM、WMS、APS、SCADA、PLM、QMS、CRM、EAM、BI,这些都是什么系统?

2024-04-11 11:00:51 1822

原创 汽车4S行业的信息化特点与BI建设挑战

汽车行业也是一个非常大的行业,上下游非常广,像主机厂,上游的零配件,下游的汽车流通,汽车流通之后的汽车后市场,整个链条比较长。今天主要讲的是汽车流通,汽车4S集团。一个汽车4S集团下面授权代理了不同主机厂的汽车品牌,小的集团十来家4S门店,大的集团上百家、几百家门店。那这个行业的信息化有什么样的特点呢?他的BI项目又面临什么样的挑战呢?下面我们来具体看一下。这个行业的业务管理模式在过去十几年时间已经打磨得非常的细致了。他们业务的本质是零售+服务的双重行业属性,但更偏服务,服务行业的管理自然就会精细化一些。

2024-04-09 11:35:52 1102

原创 企业数字化时代,数据要素是什么?有什么作用价值?

通过对数据要素的整理和归纳,可以减少数据查找和处理的时间,提高工作效率。数据要素的组织和关系可以支持数据的检索、更新、删除和维护,便于对数据进行管理和操作。数据要素的类型、字段和结构可以帮助确定适当的分析方法和工具,如统计分析、数据挖掘和机器学习等,以提取有价值的信息。1. 数据存储:数据要素提供了数据的基本组成部分,可以帮助将数据存储在适当的格式和结构中,以便后续的访问和处理。总之,数据要素是构成数据的基本组成部分,它们的作用是为了更好地管理、分析和应用数据,从而发现数据中的知识和价值,支持决策和创新。

2024-04-03 10:03:26 499

原创 企业数字化转型:聊聊数据思维!

数据具有可重复使用,组合使用,跨平台使用的特点,企业可以通过多维度的数据采集、融合、重组、扩展和再利用,突破部门边界、业务边界、系统边界、技术边界的束缚,创新新模式,开拓新领域,确立新决策,不断发掘数据背后所隐藏的“价值”。数据思维的建立,不仅仅需要对数字的敏感,更需要擅长观察数据,从数据中找出问题、找到规律并提炼见解,让数据赋能业务,服务管理。数据思维的建立,也不仅仅要懂数据,理解数据背后的业务含义,更需要有将数据用起来的能力,只有真正将数据用起来,才能检验数据的对错,发现数据的价值。

2024-03-28 11:29:27 460

原创 深入聊聊企业数字化转型这个事儿

建立数字营销系统,实现从线索、商机、订单到回款的全链路数字化,多维度的客户分析、商机分析、销售分析,帮助企业优化市场策略,让“好钢用到刀刃上”,让企业有限的资源发挥出最大的效能,驱动企业业绩增长。与互联网相关的企业和传统工业企业的转型目标一定是不一样的。数字化的核心和本质是运用大数据、云计算、物联网、区块链、AI、5G、VR/AR等数字技术,实现企业的业务和管理创新,增强企业竞争力,其重点关注的是“数据驱动”业务,典型的工具是数据化系统,例如:数据仓库,数据湖,智能分析平台,算法平台,数据资产管理平台等。

2024-03-27 16:10:45 959

原创 打通数字化最后一公里,就是数据释放价值的最后一公里;

总之,对于各行各业的企业来说,着眼当下,立足未来,脚踏实地用好、管好数据,打通业务和数据融合的最后一公里,才能构建出数字化转型的关键新能力。现在更多的企业将数据战略视为企业智能化战略重要组成部分,通过数据战略明确高级管理层作为数据驱动业务转型的领导者,期望结合大数据处理、数据挖掘、机器学习、深度学习、可视化等多种技术,从数据中提炼、发掘、获取有揭示性和可操作性的信息,为管理人员和业务人员提供洞察、预测、风控、预警等智能化决策支持服务,让数据发挥最大价值,让数据智能成为企业智能化发展新引擎。

2024-03-25 11:44:22 641

原创 生产计划数据模型,实现能源企业数字化高效管理

计划管理作为企业的生产方向,应有的放矢,以效益为经营中心,全面优化计划工作,因此,数字管理观念的提升是企业发展的重要前提。在生产过程中,以安全生产为导向,以市场经济为目标,树立数据观念,提高数据认知,加强完善数据的采集、处理、分析工作,从而提高企业的经济效益和生产计划的管理质量,促进企业切实有效地向数字化转型迈进。在安全管理方面,由于企业对劳动力的需求量大,在员工安全的管理上注重过程现场管理,对相关危险缺乏提前预防及预判,从而导致事故的发生,这不仅给员工的身体造成了伤害,也给企业带来了沉重的压力。

2024-03-21 11:38:37 843

原创 数据治理之数据标准管理及实践方法

其实跟主数据是十分相似的,讲主数据的时候,也经常讲主数据是企业的空间数据,是企业需要被共享的在各个业务系统、各个部门之间的具有高价值的数据。其中主数据,它下面包含了参考数据。实体的数据都有相应的属性信息,需要把它的每一项属性信息从三个角度,业务角度、技术角度、管理角度,进行统一的梳理,最后归纳出来与实体之间的关系,形成数据的整体模型。所谓的数据标准,就像我们盖房子打地基一样,做数据建模也好,做数据仓库也好,还是做数据质量,做数据安全也好,还是做原数据管理,那么数据标准都是其他领域的基础,它是核心的基础。

2024-03-20 16:20:24 985

原创 BI让数据分析不在困难,分解企业数据分析流程

数据治理对很多企业来说已经是很平常的事,这主要是因为企业对数据的重要性的认识越来越强,企业用到数据的地方也越来越多。海量复杂的数据是需要经过一定处理,然后才能更好更有效地利用,这其实就是数据治理,而今天要说的就是数据治理中重要的一个环节,数据清洗。所以数据清洗的主要目标就是在一定的规则下,过滤掉不符合要求的数据,或对数据进行更改,提高数据质量,避免企业在利用数据的过程中出现像数据不完整、数据重复等错误。随着数据重要性的提升,以及数据价值开始被企业大规模利用,数据的质量开始进入了企业的规划建设中。

2024-03-18 12:00:13 909

原创 数字经济时代,数据清洗不是件小事

数据治理对很多企业来说已经是很平常的事,这主要是因为企业对数据的重要性的认识越来越强,企业用到数据的地方也越来越多。海量复杂的数据是需要经过一定处理,然后才能更好更有效地利用,这其实就是数据治理,而今天要说的就是数据治理中重要的一个环节,数据清洗。所以数据清洗的主要目标就是在一定的规则下,过滤掉不符合要求的数据,或对数据进行更改,提高数据质量,避免企业在利用数据的过程中出现像数据不完整、数据重复等错误。随着数据重要性的提升,以及数据价值开始被企业大规模利用,数据的质量开始进入了企业的规划建设中。

2024-03-18 11:49:34 472

原创 企业上了BI,做了很多报表,老板为什么还是不满意?

同时,通过商业智能BI分析能够深入反映业务中的一些问题,把这些结论性的分析成果给提炼出来,这些是管理层真正需要的东西。这就需要通过商业智能BI的多维分析,通过合理的分析模型构建来动态地构建各类可视化分析报表,通过维度的及时切换、指标的及时切换,在无需IT人员的配合参与下业务人员也可以通过商业智能BI对分析维度和指标进行灵活的调整。真正管理层需要的不是这些业务过程的明细数据、二维表格,而应该是一眼就能看懂的高度汇总的指标,通过商业智能BI中的管理驾驶舱,运用简单的图表把他们所需要重点关注的内容给体现出来。

2024-03-08 11:40:16 954

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除