- 博客(496)
- 收藏
- 关注

原创 数字化时代,公司如何成为数据驱动组织
那么如何获从数据中获得得不同类型的价值以维持公司的竞争优势呢,而为了从数据中获取价值,公司应该成为“数据驱动的”组织,最终数据驱动支持了公司的数字化转型,从而使公司在实践中成为“数据驱动”。对于分享的非原创文章,有些因为无法找到真正来源,如果标错来源或者对于文章中所使用的图片、链接等所包含但不限于软件、资料等,如有侵权,请直接联系后台,说明具体的文章,后台会尽快删除。这样的协议侧重于数据要求和数据交付的规范。如果弄清资产管理的核心活动与数据管理概念之间的联系,就要明确数据的定义和数据管理作为管理的主体。
2023-06-05 15:56:23
32

原创 2023国际管理会计教育联盟发展论坛在沪成功召开
来自对外经济贸易大学、上海交通大学、北京工商大学、上海财经大学、中山大学、南京财经大学、贵州财经大学、兰州财经大学、首都经济贸易大学、重庆工商大学、中南财经政法大学、暨南大学、桂林理工大学、郑州航空工业管理学院等院校代表,中国商业会计学会等行业学会代表以及华住集团、北京艾美管会咨询有限公司、北京派可数据科技有限公司、中联物产有限公司、金蝶精一信息科技有限公司等企业代表,围绕数字技术赋能会计教育高质量发展、会计教育改革服务区域发展和国家战略能力、数字经济背景下的师资建设与人才培养等议题开展深入探讨。
2023-06-05 15:13:52
63

原创 财务创造价值,如何降本增效?
如果将成本管控进一步延伸,则必须在“整体成本管控理论图”下,找出本企业变动成本项目关键项目,根据费用项目现状,找出降本措施。从降本的角度来讲,假设降固定成本1000=FC(固定成本)/(1-60%-20%)FC(固定成本)=1000*(1-60%-20%)FC(固定成本)=200万假设降变动成本1000=300/(1-VC%-20%)VC%(变动成本率)=50%.通过计算要实现利润从10%到20%,从降本角度来讲,固定成本要从300万下降到200万,下降33.33%,变动成本下降17%。
2023-06-05 14:50:52
116

原创 数字化转型,企业为什么要转型?如何转型?
比如一些传统的轻资产企业,在数字化转型后你很难说这个企业是一个传统的业务企业还是一个互联网企业,业务和IT已经高度融合,比如类似瑞幸咖啡,喜茶这类企业,很难说是一个传统企业还是互联网企业。一个企业在传统模式下经营太久,很多时候很难跳出盒子来思考问题,比如传统方式下你都是市场和产品的视角,但是新经济模式下这个模式会变成客户的视角,变成基于数据的运营视角,这个不是传统业务的简单优化,而是变革。在理解市场和数字化转型核心思想后,提出和践行适合企业发展的新的业务战略和商业模式,实现企业一种新的破局。
2023-06-02 16:07:51
119

原创 如何把握住数字化时代的浪潮,数据要素是关键
而对于还有巨大发展空间的数字、数据机会,只能通过各种转型改革,利用数据要素的巨大价值,在全新的市场面前,不断提高自己的竞争力,获得新的发展。根据东北证券的推演,未来数据流通速度加快,受益最大的是数据供需方、空间最大的是提供各类服务的数据服务商、而目前最火热的仍旧是数据交易所行业。数据要素产业链包括数据采集、数据存储、数据处理加工、数据流通、数据分析、数据应用、生态保障七大模块,覆盖数据要素从产生到发生要素作用的全过程。数据要素价值化三阶段构成了数据要素市场,数据要素市场的构成就是把数据要素价值化的过程。
2023-06-01 16:06:54
142

原创 企业的数据信息值钱吗?如何提升数据信息的价值?
明确驱动力、优先选择业务价值高的应用场景,建设成果落地有效首先结合当前及未来企业对数据管理工作的现状、挑战和需求进行分析,识别对业务支撑力较强的业务领域、数据主题、信息系统等,选择业务价值高的应用场景为建设支撑目标,在此范围内,进行数据目录管理工作目标和路径的设计,从而通过数据目录支撑到企业数据管理战略、产生更为直接的工作效益。我们选取业界较为认可的概念,即:数据资产(Data Asset)是指由企业拥有或者控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的数据资源,如文件资料、电子数据等。
2023-05-31 16:20:03
435

原创 一文秒懂BI是什么?
整体上来说,国内企业人员对BI的认知处于宏观的目标层面,对BI功能的认知集中在数据分析和数据可视化上部门工作内容和工作性质的差异使得IT部门和业务部门的从业人员对BI的认知存在一定区别.以数据为中心,BI的核心功能主要有数据仓库、数据ETL、数据分析、数据挖掘和数据可视化。商业智能BI可以实现业务流程和业务数据的规范化、流程化、标准化,打通ERP、OA、CRM等不同业务信息系统,整合归纳企业数据,利用数据可视化满足企业不同人群对数据查询、分析和探索的需求,从而为管理和业务提供数据依据和决策支持。
2023-05-30 16:04:03
213

原创 企业数字化转型,为什么会加快商业智能BI的发展
所以商业智能BI为了应对这种情况,设计了功能非常丰富的权限系统,可以设置某个部门或是具体人员才能查看某些可视化数据分析报告,也可以针对功能,没有达到一定层级的人员无法看到某个功能模块等,很大程度上提高了企业的数据安全能力,避免企业内部出现数据泄漏的情况。很多人应该也清楚,信息化建设主要可以分为两部门,一个就是前面讲的业务信息化,优化调整业务流程,让数据进入企业,而接下来的另一部分就是数据信息化,让沉淀的数据进行价值化变现,转化为信息和知识,而这就给了商业智能BI极大的发展空间。
2023-05-29 13:56:45
112

原创 数字化时代,企业面临哪些共同的挑战?
在这种全新的社会、商业环境下,各行各业的企业都开始寻求探索新的商业模式,通过转型适应当前时代的转变,促进业务健康持续的发展。所以数字化成为了企业进行转型的工具,也成为了众多领域内企业对未来的共识。
2023-05-29 09:53:56
115

原创 数字化时代,如何规范化搭建数据仓库?
发行稿,从大面上应该不会有啥问题,但细节上可能会有考虑不周的情况,在宣讲阶段、执行阶段遇到问题阻碍的时候,应该根据实际情况对规范做出调整,唯有经过实践检验才能愈发完善,相信经过一段时间的持续实践,规范会成为组织文化的一部分,进而降低沟通成本、提高开发效率、保证交付质量,从而实现团队和个人的双赢。用通俗的话来说就是数据仓库就像一个终端的大仓库,其他小仓库的各种货品会通过各种方式统一存储到这里,然后通过仓库位置的划分、货品的摆放进行归纳分类,实现规范、标准的从存放,到分类,再到使用的完整过程。
2023-05-25 11:15:45
140

原创 数据可视化是什么?怎么做?看这篇文章就够了
常用的视觉暗示主要有:位置(位置高低)、长度(长短)、角度(大小)、方向(方向上升还是下降)、形状(不同形状代表不同分类)、面积(面积大小)、体积(体积大小)、饱和度(色调的强度,就是颜色的深浅)、色调(不同颜色)。数据墨水是指为了呈现数据所用的墨水,在图表中主要是指柱状图的那些柱子,折线图的那根线之类的。诸如此类的分类所得到的数据被称为分类数据。此处的背景和我们在语文中学习到的背景是一个概念,是为了说明数据的相关信息(who、what、when、where、why),使数据更加清晰,便于读者更好的理解。
2023-05-24 17:13:43
235

原创 史上最全BI知识全解,万字长文带你读懂BI
这种独立的、单独的面向前端的商业智能BI分析工具,他们更多的定位是部门级和个人级的商业智能BI 分析工具,对于深层次的需要复杂数据处理、集成、建模等很多场景是无法解决的。从市场宣传和销售的角度来说,简化产品的复杂度和上手难度的宣传是没有问题的,有问题的是以一种错误的讲解、不专业的讲解最终误导企业接受了这些不正确的概念,并以这些不正确的概念来评估与规划 商业智能BI 项目的建设,没有充分预计到 商业智能BI 项目建设过程中可能会遇到的挑战与风险,最后导致项目的不成功与失败、反复建设。
2023-05-23 16:46:34
318

原创 ChatGPT ?、AI 和机器人,是为人类打工还是将取代人类?
ChatGPT(全名:Chat Generative Pre-trained Transformer,中文名:聊天生成型预训练变换模型),美国OpenAI研发的聊天机器人程序,于2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过理解和学习人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流。ChatGPT能回答连续性的问题、承认自己的错误、质疑不正确的假设,甚至拒绝不合理的需求。
2023-05-22 14:53:13
475

原创 如何区别BI、大数据、信息化和数字化转型
通俗点说,就是企业通过信息化建设后(例如上了MES、OA、ERP等业务系统),经过多年,在内部积累了大量的业务数据,但这些数据没道理放着不用对吧,那怎么用,怎么把这些数据用出价值替企业赚钱?商业智能BI可以实现业务流程和业务数据的规范化、流程化、标准化,打通ERP、OA、CRM等不同业务信息系统,整合归纳企业数据,利用数据可视化满足企业不同人群对数据查询、分析和探索的需求,从而为管理和业务提供数据依据和决策支持。个人认为这题没有标准答案,因为不同数据发展阶段的企业,所面临的数据问题是不同的。
2023-05-22 13:52:31
152

原创 经常说的数据仓库,是如何存储数据的
数据仓库(Data Warehouse),简称DW。数据仓库顾名思义,是⼀个很⼤的数据存储集合,出于企业的分析性报告和决策⽀持⽬的⽽创建,对多样的业务数据进⾏筛选与整合。它能为企业提供⼀定的BI(商业智能:例如数据挖掘、数据分析和数据报表)能⼒。有了数据报表,还可以指导业务流程改进。二、 数据仓库解决什么问题?数据仓库是应景大数据而生的,解决的问题无非就是存储和快速提取, 另外还有跨部门应⽤的功能。对于不同数据整合到了数据仓库之后,也就是大数据有了存储的位置;
2023-05-19 14:09:04
150

原创 企业落地数字化转型,如何部署战略规划
意味着企业能够通过数字化技术,例如云计算、大数据、人工智能等,对企业从技术上进行变革,发挥出新技术的能力,为企业赋能:也意味着企业能够把沉淀的大量数据变成数据资产,并通过数据分析、数据可视化等将数据资产价值化,利用得到的信息和知识,洞察和决策企业的未来发展。所以对于企业来说,由企业高层管理人员主导数字化转型的路径,从战略规划上完善整个企业转型的布局,然后组建一支强有力的转型团队,负责协调落地整个企业的转型任务,在高层权限以及各方面资源的支持下,企业就能够避免转型路径上的纷扰,全力推行数字化转型的落地。
2023-05-18 16:28:15
649

原创 数字化时代,初创公司如何建设业财一体化
对于分享的非原创文章,有些因为无法找到真正来源,如果标错来源或者对于文章中所使用的图片、链接等所包含但不限于软件、资料等,如有侵权,请直接联系后台,说明具体的文章,后台会尽快删除。3、业务数据到财务数据,是通过会计的加工,把业务数据变成一套通用版的外部审计或尽调能看得通的语言,变成财务数据所谓的核算报表,财务的一些数据可以作为指标的分析。同样的,财务和银行的系统、财务和OA的系统如果无法打通,当企业做大之后,也会非常痛苦,数据获取慢,核对难度大,管理成本高。因此,对于风险控制、内控提出了更高的要求。
2023-05-17 15:30:13
76

原创 大型央企集团财务经营分析框架系列(三)
由于这些业务本身的运营是由二级集团\企业独立开展的,没有管理的诉求、信息化和数据的支撑,因此在核心数据的关注上不会深入到非常微观的层面,还是会从宏观的"大数"层面去关注下。对于二级集团或以下的企业,由于具备深入业务终端的管理条件、信息化条件、数据条件,因此会进入深度的业务管控经营分析,就会包含狭义的财务分析和广义的深度财务分析。狭义的财务分析层面 —— 销售净利率的下滑,影响因素可能是销售收入的下降、营业成本的上升、管理费用的浪费、财务分析的增加等等,可以从宏观的角度找到相关的因素。
2023-05-16 17:57:16
423

原创 什么是BI ?BI 能给企业带来什么价值?
国外的外企资本和BI厂商有更加深厚的技术积淀和底蕴,但是国内的新生代也在这条快车道上奋起直追,在商业分析领域,更好、更快的分析出当下的趋势和动向是每个企业生产和决策的需要。在不远的将来,数据会更深层的影响企业领导者的决策,无论你身在何处。又因为汽车行业有大量成熟的业务管理经验,导致汽车行业即使在一个很小的商业智能BI项目上,业务指标也会有300~1500的大范围波动,所以汽车行业BI商业智能的发展还有很大增长空间,这个行业的商业智能BI要做好,需要花很长时间来沉淀,才能正式打开汽车行业BI的大门。
2023-05-16 16:08:56
1113

原创 全球范围内的数字化时代,挑战和价值有哪些?
还有就是数据治理团队需要对企业的管理制度进行一定程度上的调整,因为数据治理是需要动员全体员工,并通过长期坚持才能不断提高数据质量的过程,所以很大程度上需要让员工拥有自觉性,通过数据文化或数据考核KPI等明白数据治理工作的重要性,在业务过程中能够遵守相关工作制度,在日常中以规范、标准化的姿态面对数据。变更交付:在线感知客户体验、更快的产品或服务创新、更快的迭代速度、更短的技术评审时间、更复杂的版本管理、无序的变更计划等因素,驱动运维进行更全面的技术平台的建设,交付协同模式的变化,绩效考核的调整等新要求。
2023-05-16 10:25:04
264

原创 数字化时代,探寻BI本质与发展趋势
这种独立的、单独的面向前端的商业智能BI分析工具,他们更多的定位是部门级和个人级的商业智能BI 分析工具,对于深层次的需要复杂数据处理、集成、建模等很多场景是无法解决的。从市场宣传和销售的角度来说,简化产品的复杂度和上手难度的宣传是没有问题的,有问题的是以一种错误的讲解、不专业的讲解最终误导企业接受了这些不正确的概念,并以这些不正确的概念来评估与规划 商业智能BI 项目的建设,没有充分预计到 商业智能BI 项目建设过程中可能会遇到的挑战与风险,最后导致项目的不成功与失败、反复建设。
2023-05-12 15:35:33
244

原创 身为企业管理者,必须了解的财务知识
资金是企业的“血液”,企业资金运动的特点是循环往复地流动,资金的生命在于“活”,资金活,生产经营就活,一“活”带百“活”,如果资金不流动,就会“沉淀”或“流失”,得不到补偿增值。老板要学会分清成本和费用的关系,成本是要和收入配比结转的,费用是当期发生的,两者不是一回事,所以老板要关注个人借款挂账的情况,这也是对公司资源的占用。有人提到固定资产要注意,其实要注意的是固定资产形成以前的在建工程,所以项目立项造预算才是最重要的,这其实不是财务的事,最多需要财务发挥监督职能,老板只要把人用好就行。
2023-05-12 14:48:06
541

原创 建筑行业搭建BI数据可视化平台,已成为大势所趋
对于目前我国的建筑企业而言,信息化建设往往是为了信息化而信息化,企业管理者因为各种因素,并没有对信息化发展进行全局把握及规划,这样产生的信息化往往存在“两张皮”,即线上线下分开走的现象,不仅不能有效地获取信息,还会在今后企业的发展中因为缺乏价值而受到忽视,不为企业员工所接受。建筑企业的信息化建设以及运行并不是一个独立的个体,而是一个整体的系统,其不仅需要有完善的制度以及成熟的技术作为基础,还要整合企业的数据以及发展战略等多方面的因素,形成一个贯穿企业整体结构的系统化工程。
2023-05-11 15:23:04
484

原创 数字化战略,如何解读企业财务报表
就如同在医院做体检一样,通过对体检报告上各项指标的解读,了解哪些指标是正常的,哪些是不正常的,需要有一个非常直观的对比和判断,起到诊断的效果。所以,把握一家企业的财力,不仅仅要看现金流量表这份监控企业现金流量的表格,同时也要结合资产负债表上资产负债结构(财务杠杆),用最优的方式充分利用企业的资本结构,以取得更高效的回报。好的企业都有一个相似的地方,就是效率高。财力 — 一样的产品、一样的效率,靠什么最后在市场上胜出,那就是财力 —— 不仅仅是账面上的资金多少的问题,更重要的是企业调动和运用资金的能力。
2023-05-10 15:58:45
670

原创 BI 数字化转型对央企和中小企业的利好
数字化产品和服务的大规模应用也让数字经济、数据价值得到了众多企业的重视。先说数字经济,据统计,2020年全球数字经济规模达到32.61万亿美元,与GDP总量比例为43.7%,其中中国数字经济规模达到了5.4万亿美元,并维持着9.6%的高速增长。相比数字经济,数据价值主要体现在对企业进行升级改造,提升企业业务发展水平以及决策能力,提高研发生产在市场和用户群体中的需求能力,提升企业运转效率等。数据可视化 - 派可数据商业智能BI可视化分析平台。
2023-05-09 16:15:01
957

原创 BI财务智能分析,让企业管理更上一层楼
但是经营分析一定不是的,因为市场环境是动态的、业务是动态的、问题也是动态的,所以经营分析的重点在不同的阶段也一定是不一样的。第三层,数据源层 - 即商业智能BI的数据层,各个业务系统底层数据库的数据通过 ETL 的方式抽取到 商业智能BI 的数据仓库中完成 ETL 过程,建模分析等等,最终支撑到前端的可视化分析展现。财务智能分析管理平台围绕集团财务发展目标框架,强化协同意识,凝聚各方力量,全面落实项目建设各项要求,精心制定项目推进方案,定时间、定任务、定措施、定责任,倒排工期,挂图作战,抓好组织落实。
2023-05-08 16:37:01
445

原创 看过这篇文章,读懂数据分析
聚合,简单讲就是数据源里的多行数据按照一定的标准计算成一个数据,不管数据集里有一行还是多行,视图里的数据都是聚合后的结果,一行数据也是要聚合的,当然一行数据聚合的结果是一样的。产品经理不需要成为数据分析方面的专家,但什么时候分析数据、分析哪些数据、如何分析数据、如何用数据辅助决策、如何用数据驱动业务,这些问题是产品经理必须要回答的。底层的业务数据表其实很多,几十张上百张都有,但到了业务数据分析阶段,当需要分析的数据存储在不同的表,可以通过数据关联,把多个表连接起来,形成模型进行数据分析。
2023-05-06 16:20:27
366

原创 提升自我数据分析能力的根本,是方法论!
这些是在书本上、视频中直接学习不到的,是需要有意识的去深度思考、总结、验证和优化最终形成自己的一套解决复杂问题的理论方式方法,这背后是有大量的逻辑思考来支撑的。为什么有时你做的可视化页面和报表没有人看,因为你没有理解BI是企业业务管理思维的落地,你理解了这一点,就会知道我们在设计可视化报表的时候需要弄清楚我们所服务对象的差异、业务线的差异、管理层次的差异,就会了解原来他们的关注点是不一样的,分析问题的角度是不一样的。在解决复杂系统问题中,最重要的是人的基础逻辑,这是方法论最底层的框架和原理。
2023-05-05 16:27:20
450

原创 BI 商业智能和报表,傻傻分不清楚?一文给你讲透
我们经常所听到的大数据、商业智能BI、数据分析、数据挖掘等我们都统称为数据信息化。数据信息化可以帮助企业全面的了解企业的经营管理,从经验驱动到数据驱动,降低情绪、心理等主观影响,形成以数据为基础的业务决策支撑,提高决策的准确性,这是企业更高层次的企业管理方式。商业智能BI - 派可数据商业智能BI可视化分析平台信息化建设具有连贯性,没有业务系统的建设,就不会有数据的沉淀,而没有数据的沉淀,就没有建设商业智能 BI 的基础。
2023-05-04 16:17:44
494

原创 大型央企集团财务经营分析框架系列(二)
某集团企业建了一个大数据、数据中台,规划的方向是除了集团层面相关的数据整合、打通之外,还要打通二级集团、企业的各类系统数据,数据上云,数据要全部接入进来,全都整合到中台里面来。这样从集团层面,要了解什么信息就了解什么信息,可以深入到二级业务层面的数据,深度掌控业务,更好的支撑到集团层面的管理决策。我们真正要做的是:通过这个人的提问判断出来在这些问题当中,其中有些提问本身就是有问题的,并且可以推断出他的问题背后代表了一种项目规划、推进的思路和方向,这个时候就能发现这个思路和方向本身可能也是错的。
2023-05-04 11:46:09
455

原创 企业管理中,如何组建数据团队
从这个方面来讲,其实数据仓库是解决得更好的,不论数据生产的过程中涉及到了多少技术栈,最终产出的结果就是一张张的宽表,这大大降低了比如像算法和数据研发之间的协作成本,解决了不同系统模块之间数据流转的问题。数据团队更像是数据的搬运工,并在搬运的过程中对数据进行适当加工,让海量、零散的数据最终可以成为业务决策的关键因子来影响下一轮真实用户与业务系统的交互方式,从而形成数据闭环。数据指标是一切数据产品的基础,如何快速准确地计算并管理数以千计的数据指标及其衍生指标,是每一个数据工程团队首先要解决的问题。
2023-04-28 16:30:25
1236

原创 纯干货讲解财务三大报表,值得收藏
3、所有者权益所有者权益是企业资产扣除负债后的剩余权益,反映企业在某一特定日期股东(投资者)拥有的净资产的总额,它一般按照实收资本、资本公积、盈余公积和未分配利润分项列示。2、经营活动现金流净额等于零:说明企业没有挣到钱,目前的现金流不能够支持购建新的固定资产和无形资产,比如购建新的厂房,购买新的设备。这种情况下,随着老的设备的老化,企业的产能就会下降,竞争力也会受到影响。利润表是公司业务流的表达,在企业经营过程中,想取得好的利润,就要对形成利润的关键因素进行管理,如销售收入的完成、成本的管理等。
2023-04-27 16:23:16
78

原创 企业数字化管理中,数据治理到底怎么“治”
随着信息化、数字化的理念、技术及其应用在社会的方方面面进行扩散,数据的规模和丰富程度已经达到了一个新的高度,所以当下如何更进一步利用好数据,充分发挥数据的价值,将其真正变为高质量的数据资产成为了企业要面对的重要问题,这也就是数据治理项目如此火热的原因。虽然数据治理很复杂,在企业中的实际成功率也并不高,但大多数企业的数据治理目标其实很简单,就是不断提升数据质量,规范数据生产、存储、处理、分析等数据生命周期的过程,让企业能够更方便的利用数据,将数据转化为信息和知识,形成企业的重要资产。
2023-04-26 16:35:45
373

原创 企业的信息化和数字化有什么区别
数字化是业务新的存在形式,如果说信息化是对业务的局部支撑,那么数字化就是对业务的整体重塑,这是数字化和信息化之间最大的区别,也决定了数字化转型在实施时有着与信息化建设完全不同的底层逻辑。信息化建设和数字化转型有着相同的背景,那就是实体世界和数字世界的交互。
2023-04-25 16:46:25
422

原创 酒店行业,BI分析关注哪些指标
酒店作为企业商旅系统中相关酒店业务实现的基础核心部分,会接入大量不同类型的供应商,从这些供应商拉取大量的酒店数据,并对这些数据进行整合。信息化建设确实帮助酒店行业提高了管理水平,更好地实现资源共享。但同时管理需求日益增多,也对信息化提出了更高的要求,
2023-04-24 16:51:14
307

原创 小白也能看懂,解读数据中台
1、数据存储框架数据中台的核心是数据,数据通过采集系统获取,然后数据经过处理框架加工,并接受数据治理框架的管理,同时也要接受数据安全管理框架的管理,最后开放的价值数据将通过数据运营框架对外提供数据服务。● 元数据和标签数据都是对数据的描述,其中元数据用来对数据的客观属性进行表示,标签数据更倾向于管理者对数据的主观表述及等级划分,比如质量等级标签、安全标签、属性标签等。● 宽表数据是数据关联的结果,利用宽表数据可以对人、事、地、物、组等对象进行完整的数据画像,同时宽表数据也可以作为上层模型数据的中间层数据。
2023-04-23 14:12:38
975

原创 企业如何从0到1落地BI项目
提供面向集团管理层、业务领导、业务人员的多层级的数字化信息看板,利用标准的指标描述,统一的数据口径,在发现问题,追溯问题,定位问题,解决问题过程中,各层级始终以数字化描述,提升集团整体业务数字化管理能力,也将提高业务人员数据处理效率和数据多维度分析能力,增强主管部门的数据应用与分析能力,从而为经营决策提供新的手段。通过数据整合、统一口径等手段,将有效提升数据准确度、完善度、标准度,利用各业务系统数据关联后的二次开发,将实现经营状况数字化分析,通过多终端、多场景的数据应用,提升指挥调度、应急响应能力。
2023-04-21 17:55:02
376

原创 数字化时代,如何推动实体经济和数字经济的融合
这些融合虽然对企业原有的模式造成了一定影响,但是却从庞大的8.42亿网络用户购物中开辟了新的道路,得到了新的巨大的发展空间,这就是融合给商业世界带来的新的模式。在互联网赛道发展的企业毫无疑问得到了21世纪最大的风口红利,并且因为相关理念、技术、文化等的传播,各行各业的企业开始推进与互联网的融合,也就是火爆的“互联网+”时代。此外因为娱乐行业的规范活动,很多传统意义上的艺人没有了太多的前路,已经开始打造以及的虚拟艺人以及虚拟偶像团体等,虽然还都只是人类的演绎,但呈现在屏幕上的都是虚拟的形象。
2023-04-21 15:18:29
554

原创 由表及里的解读数据仓库
ODS数据缓冲区ODS数据缓冲区是业务数据流动过程的第一个存储区,实现了数据仓库从各个业务系统的数据源中将数据抽取出来,并且装载到ODS数据缓冲区的这一过程,从而实现统一的全局的企业数据平台,为以后的数据抽取、清洗、转换过程打下坚实的基础。数据仓库很重要的一个作用就是将散落在各业务系统的数据整合起来,不规范的数据规范起来,以一种便于分析和应用的方式放到数据仓库里,供前端应用分析。数据的获取与整合是完成数据仓库建设取复杂的过程,它关系到数据的质量,是数据仓库项目建设的根基。数据重复建设,冗余数据多。
2023-04-20 14:13:36
380

原创 助力电力行业数字化,BI 大有可为
十四五”开年持续降低。大型发电企业管理的覆盖面超乎想象,除了集团内部复杂的金字塔层级外,还有诸多子公司,子公司还分管大量的发电厂等,加上内部决策流程复杂,涉及到多层级、多部门,也就对于BI的灵活性提出了更高要求,企业的业务部门必须要通过BI做到企业组织架构、用户的精细化管理。根据发电企业的发展需要,一系列的业务系统、管理系统、生产系统相继实施上线并且发挥了其应有的功能,优化了业务流程,但随着业务发展越来越壮大,这些系统并非来源于统一的供应商,导致各系统之间信息孤立,难以整合,导致更大的价值难以充分发挥。
2023-04-19 12:04:41
332
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人