flume采集数据到hdfs上为什么会生成很多的小文件呢?????

原文链接:https://blog.csdn.net/qq_32502511/article/details/85048594

问题:

flume监控的目录写入大文件的时候不能同步记录在hdfs中
flume监控的目录写入大文件的时候,同步记录到hdfs中后变成多个小文件

flume从kafka中读取数据下沉到hdfs中会生成很多小文件
解决办法:更改flume的配置信息(主要更改滚动方式),滚动的意思是当flume监控的目录达到了配置信息中的某一条滚动方式的时候,会触发flume提交一个文件到hdfs中(即在hdfs中生成一个文件)
flume有三种滚动方式。
1.按照时间
2.按照大小
3.按照count.
如果时间不合适。可以按照大小来滚动,比如70M
rollsize=70M ,当然这里记得换算单位70*2024

下面的示例是设置rollInterval=60秒的时候滚动一次,60秒同步一次数据到hdfs中,也就是说在60秒之内kafka里面插入的新数据都会被放在当前这个hdfs文件,60秒过后将滚动生成一个新的hdfs文件。

##kafka-source

a1.sources = r1
a1.sinks = k1
a1.channels = c1

Describe/configure the source

a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.kafka.bootstrap.servers = 192.168.12.103:6667,192.168.12.102:6667,192.168.12.104:6667
a1.sources.r1.kafka.consumer.group.id = lyl-gid1
a1.sources.r1.kafka.topics = flume_test

Describe the sink

a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /test/flume/test/
a1.sinks.k1.hdfs.useLocalTimeStamp = false
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.filePrefix = test
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.fileType = DataStream

hdfs.rollInterval属性设置打开时间,使时间足够长,获取足够多的内容

a1.sinks.k1.hdfs.rollInterval = 60

hdfs.rollSize属性设置文件大小,当文件达到一定的大小的时候才传输(默认1024个字节)

a1.sinks.k1.hdfs.rollSize = 0
#hdfs.rollCount属性设置接受的事件数目,当文件写满了给定数量的事件之后才传输。
a1.sinks.k1.hdfs.rollCount = 0

Use a channel which buffers events in memory

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1500000
a1.channels.c1.transactionCapacity = 10000

Bind the source and sink to the channel

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

接下来,再来看看通过设置rollSize大小来控制滚动,如我这里设置为5kb就滚动

Describe the sink

a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /test/flume/test/
a1.sinks.k1.hdfs.useLocalTimeStamp = false
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.filePrefix = test
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.fileType = DataStream

hdfs.rollInterval属性设置打开时间,使时间足够长,获取足够多的内容

a1.sinks.k1.hdfs.rollInterval = 0

hdfs.rollSize属性设置文件大小,当文件达到一定的大小的时候才传输(默认1024个字节)

a1.sinks.k1.hdfs.rollSize = 5120
#hdfs.rollCount属性设置接受的事件数目,当文件写满了给定数量的事件之后才传输。
a1.sinks.k1.hdfs.rollCount = 0

注意sink.type,如果是memory模式,注意文件的大小,防止内存不足,太大可以设置sink.type = file

Flume 是一种用于数据采集、聚合和移动的工具,它可以将多种来源的数据收集到 HDFS(Hadoop分布式文件系统)中。通过 Flume,用户可以轻松地配置和管理数据流,确保数据的可靠性和一致性。 首先,用户需要在 Flume 的配置文件中定义数据源,例如日志文件、网络源或其他存储位置。接着,用户需要定义数据的处理流程,包括数据的过滤、转换和路由策略。然后,用户需要指定目的地为 HDFS,并设置 HDFS 的相关参数,包括数据写入路径、文件格式和压缩方式等。 当 Flume 启动后,它按照用户定义的规则和流程,从数据源收集数据,并将其经过处理后写入HDFS 中。Flume 可以确保数据的高效传输和存储,同时具有容错和重试机制,以保证数据的可靠性和完整性。 在数据采集HDFS 后,用户可以通过 Hadoop 生态系统中的其他工具和框架,如 MapReduce、Spark 等进行数据处理和分析。同时,用户也可以通过 HDFS 提供的 API 和命令行工具,对数据进行管理和检索,以满足各种业务需求和分析任务。 总之,通过 Flume数据采集HDFS 中,用户可以实现大规模数据的收集、存储和分析,为企业决策和业务运营提供基础支持。同时,Flume 也为数据工程师和分析师提供了一个灵活、高效的数据采集和处理工具,助力他们更好地利用数据来推动业务发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值