Matlab数学建模实战应用:案例3 - 投资组合优化

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

完整代码示例

四、模型验证

五、模型应用

实例示范:投资组合优化

步骤 1:导入数据并计算统计量

步骤 2:建立优化模型并求解

步骤 3:绘制有效前沿(Efficient Frontier)

步骤 4:比较不同投资组合策略

步骤 5:回测和风险评估

步骤 6:计算夏普比率和最大回撤

步骤 7:应用模型进行投资决策支持和资产再平衡

实例总结

投资决策支持

资产再平衡

风险监控

总结


前言

投资组合优化是金融工程中的核心问题之一,通过合理分配资金在不同资产之间,可以在控制风险的同时最大化收益。本文将详细介绍一个投资组合优化的完整过程,包括问题分析、模型选择、Matlab代码实现、模型验证和应用。

一、问题分析

  1. 投资目标

    • 投资者通常希望通过组合投资来分散风险,同时获得合理回报。常见的目标包括最大化收益、最小化风险或在特定风险水平下最大化收益。
  2. 风险控制

    • 分散投资的主要目的是通过持有不同资产,降低单个资产的波动对整体组合的影响。风险控制可以通过方差或标准差等指标来衡量。
  3. 资产收益率

    • 每个资产的预期收益率是投资决策的重要依据,可以通过历史数据或金融模型获得。
  4. 投资组合策略

    • 投资组合策略包括均值-方差模型(Markowitz模型)、资本资产定价模型(CAPM)等。

二、模型建立

三、Matlab代码实现

以下是使用Markowitz模型进行投资组合优化的完整代码示例。

  1. 导入数据
    • 假设资产的历史收益率信息存储在文件assets_data.csv中。

    % 读取资产收益率数据
    data = readtable('assets_data.csv');
    returns = data{:,:}; % 假设数据的各列为不同资产的收益率
    num_assets = size(returns, 2);

    % 计算资产的期望收益率和协方差矩阵
    exp_returns = mean(returns);
    cov_matrix = cov(returns);

  1. 建立优化模型
    • 使用Markowitz均值-方差模型寻找最优投资组合。

    % 设置优化目标和约束
    target_return = 0.02; % 目标收益率
    Aeq = ones(1, num_assets); % 权重之和为1
    beq = 1;
    lb = zeros(num_assets, 1); % 各资产权重要大于等于0
    ub = ones(num_assets, 1); % 各资产权重要小于等于1

    % 使用quadprog求解二次规划问题
    options = optimoptions('quadprog', 'Display', 'off');
    w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

    % 输出最优权重和预期收益、风险
    optimal_return = exp_returns * w;
    optimal_risk = sqrt(w' * cov_matrix * w);
    disp(['Optimal Weights: ', num2str(w')]);
    disp(['Expected Return: ', num2str(optimal_return)]);
    disp(['Expected Risk: ', num2str(optimal_risk)]);

  1. 绘制有效前沿(Efficient Frontier)
    • 通过绘制有效前沿,我们可以看到在不同收益率和风险水平下的最优投资组合。

    % 生成不同目标收益率下的有效前沿
    target_returns = linspace(min(exp_returns), max(exp_returns), 50);
    risks = zeros(size(target_returns));
    weights = zeros(num_assets, length(target_returns));

    for i = 1:length(target_returns)
        rt = target_returns(i);
        w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);
        weights(:, i) = w;
        risks(i) = sqrt(w' * cov_matrix * w);
    end

    % 绘制有效前沿
    figure;
    plot(risks, target_returns, 'LineWidth', 2);
    title('Efficient Frontier');
    xlabel('Risk (Standard Deviation)');
    ylabel('Return');
    grid on;

  1. 比较不同投资组合策略
    • 通过比较不同的投资组合策略(如等权重策略、风险最小化策略)来评估各策略的优缺点。

    % 等权重策略
    w_eq = ones(num_assets, 1) / num_assets;
    return_eq = exp_returns * w_eq;
    risk_eq = sqrt(w_eq' * cov_matrix * w_eq);

    % 风险最小化策略
    w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);
    return_min_risk = exp_returns * w_min_risk;
    risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);

    % 绘制比较图
    figure;
    plot(risks, target_returns, 'LineWidth', 2);
    hold on;
    scatter(risk_eq, return_eq, 50, 'r', 'filled');
    scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
    legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');
    title('Comparison of Investment Strategies');
    xlabel('Risk (Standard Deviation)');
    ylabel('Return');
    grid on;

完整代码示例

% 读取资产收益率数据
data = readtable('assets_data.csv');
returns = data{:,:}; % 假设数据的各列为不同资产的收益率
num_assets = size(returns, 2);

% 计算资产的期望收益率和协方差矩阵
exp_returns = mean(returns);
cov_matrix = cov(returns);

% 设置优化目标和约束
target_return = 0.02; % 目标收益率
Aeq = ones(1, num_assets); % 权重之和为1
beq = 1;
lb = zeros(num_assets, 1); % 各资产权重要大于等于0
ub = ones(num_assets, 1); % 各资产权重要小于等于1

% 使用quadprog求解二次规划问题
options = optimoptions('quadprog', 'Display', 'off');
w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

% 输出最优权重和预期收益、风险
optimal_return = exp_returns * w;
optimal_risk = sqrt(w' * cov_matrix * w);
disp(['Optimal Weights: ', num2str(w')]);
disp(['Expected Return: ', num2str(optimal_return)]);
disp(['Expected Risk: ', num2str(optimal_risk)]);

% 生成不同目标收益率下的有效前沿
target_returns = linspace(min(exp_returns), max(exp_returns), 50);
risks = zeros(size(target_returns));
weights = zeros(num_assets, length(target_returns));

for i = 1:length(target_returns)
    rt = target_returns(i);
    w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);
    weights(:, i) = w;
    risks(i) = sqrt(w' * cov_matrix * w);
end

% 绘制有效前沿
figure;
plot(risks, target_returns, 'LineWidth', 2);
title('Efficient Frontier');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;

% 等权重策略
w_eq = ones(num_assets, 1) / num_assets;
return_eq = exp_returns * w_eq;
risk_eq = sqrt(w_eq' * cov_matrix * w_eq);

% 风险最小化策略
w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);
return_min_risk = exp_returns * w_min_risk;
risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);

% 绘制比较图
figure;
plot(risks, target_returns, 'LineWidth', 2);
hold on;
scatter(risk_eq, return_eq, 50, 'r', 'filled');
scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');
title('Comparison of Investment Strategies');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;
四、模型验证

投资组合优化模型建立后,需要通过实际数据检验其有效性。以下是模型验证的几个方面:

  1. 回测(Backtesting)
    • 回测是通过使用历史数据检验投资策略在过去的表现,从而评估其有效性和稳定性。

    % 从历史数据中取出一部分作为回测数据
    backtest_returns = returns(end-12:end,:); % 假设最近一年(12个月)数据用于回测

    % 根据优化模型得到的权重进行回测
    portfolio_returns = backtest_returns * w;
    portfolio_cumulative_returns = cumprod(1 + portfolio_returns) - 1;

    % 绘制回测结果
    figure;
    plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);
    title('Backtesting Portfolio Cumulative Returns');
    xlabel('Time (months)');
    ylabel('Cumulative Returns');
    grid on;

  1. 风险评估
    • 使用夏普比率、最大回撤等指标评估投资组合的风险和收益。

    % 计算夏普比率(假设无风险利率为 0.03)
    risk_free_rate = 0.03 / 12; % 月利率
    excess_returns = portfolio_returns - risk_free_rate;
    sharpe_ratio = mean(excess_returns) / std(excess_returns);

    % 计算最大回撤
    cumulative_returns = cumprod(1 + portfolio_returns) - 1;
    drawdowns = max(max(cumulative_returns) - cumulative_returns);
    max_drawdown = max(drawdowns);

    disp(['Sharpe Ratio: ', num2str(sharpe_ratio)]);
    disp(['Maximum Drawdown: ', num2str(max_drawdown)]);

  1. 比较不同回测策略
    • 通过比较等权重策略、风险最小化策略等回测结果对比不同策略的优劣。

    % 根据等权重策略进行回测
    portfolio_returns_eq = backtest_returns * w_eq;
    portfolio_cumulative_returns_eq = cumprod(1 + portfolio_returns_eq) - 1;

    % 根据风险最小化策略进行回测
    portfolio_returns_min_risk = backtest_returns * w_min_risk;
    portfolio_cumulative_returns_min_risk = cumprod(1 + portfolio_returns_min_risk) - 1;

    % 绘制不同策略的回测结果比较
    figure;
    plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);
    hold on;
    plot(1:length(portfolio_cumulative_returns_eq), portfolio_cumulative_returns_eq, 'r--', 'LineWidth', 2);
    plot(1:length(portfolio_cumulative_returns_min_risk), portfolio_cumulative_returns_min_risk, 'g-.', 'LineWidth', 2);
    legend('Optimal Portfolio', 'Equal Weight Portfolio', 'Minimum Risk Portfolio', 'Location', 'Best');
    title('Comparison of Backtesting Cumulative Returns');
    xlabel('Time (months)');
    ylabel('Cumulative Returns');
    grid on;

以下表格总结了模型验证步骤及其示例:

步骤说明示例代码
回测使用历史数据检验投资策略的有效性和稳定性backtest_returns = returns(end-12:end,:); portfolio_returns = backtest_returns * w;
风险评估使用夏普比率、最大回撤等指标评估投资组合的风险和收益sharpe_ratio = mean(excess_returns) / std(excess_returns); max_drawdown = max(drawdowns);
比较不同回测策略比较等权重策略、风险最小化策略等回测结果plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b');

五、模型应用

投资组合优化模型的实际应用包括以下几个方面:

  1. 投资决策支持
    • 根据优化模型的建议,分配资金到不同资产,形成具体的投资组合策略。

    % 输出最优投资组合权重
    disp('Optimal Portfolio Weights:');
    disp(w);

    % 根据权重分配投资金额(假设总金额为100万元)
    total_investment = 1e6;
    investment_allocation = total_investment * w;
    fprintf('Investment Allocation:\n');
    for i = 1:num_assets
        fprintf('Asset %d: %.2f\n', i, investment_allocation(i));
    end

  1. 资产再平衡
    • 随着市场条件的变化,定期调整投资组合,使其始终符合最优比例。

    % 设定再平衡周期(例如每季度)
    rebalance_period = 3; % 每3个月进行一次再平衡
    for t = rebalance_period:rebalance_period:length(prices)
        current_prices = prices(t-rebalance_period+1:t,:);
        current_returns = diff(log(current_prices)); % 计算最新收益率
        current_exp_returns = mean(current_returns);
        current_cov_matrix = cov(current_returns);

        % 使用最新数据重新进行优化
        w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

        % 更新投资组合权重
        disp(['Rebalanced Weights at Time ', num2str(t)]);
        disp(w');
    end

  1. 风险监控
    • 持续监控投资组合的风险和波动,并根据市场变化和投资目标进行调整。

    % 每月计算投资组合的实际收益和风险
    for t = 1:length(prices)
        % 计算逐月收益率
        monthly_returns = mean(returns(t,:));
        monthly_risks = std(returns(t,:));

        % 输出月度收益和风险
        fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);

        % 如果风险超出预期范围,采取相应措施
        if monthly_risks > expected_risk_range
            disp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');
        end
    end

以下总结了模型应用的步骤及其示例:

应用场景说明示例代码
投资决策支持根据优化模型的建议,分配资金到不同资产investment_allocation = total_investment * w;
资产再平衡定期调整投资组合,使其始终符合最优比例w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, ...);
风险监控持续监控投资组合的风险和波动,并根据市场变化进行调整fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);

实例示范:投资组合优化

为了更好地理解上述方法,以下是一个完整的投资组合优化案例。

假设我们有一个投资组合,包括多个资产,其历史收益率数据存储在CSV文件assets_data.csv中。我们的目标是通过Markowitz均值-方差模型来优化投资组合,以在给定的目标收益率下最小化投资风险。

步骤 1:导入数据并计算统计量

% 读取资产收益率数据
data = readtable('assets_data.csv');
returns = data{:,:}; % 假设数据的各列为不同资产的收益率
num_assets = size(returns, 2);

% 计算资产的期望收益率和协方差矩阵
exp_returns = mean(returns);
cov_matrix = cov(returns);

步骤 2:建立优化模型并求解

% 设置优化目标和约束
target_return = 0.02; % 目标收益率
Aeq = ones(1, num_assets); % 权重之和为 1
beq = 1;
lb = zeros(num_assets, 1); % 各资产权重要大于等于 0
ub = ones(num_assets, 1); % 各资产权重要小于等于 1

% 使用 quadprog 求解二次规划问题
options = optimoptions('quadprog', 'Display', 'off');
w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

% 输出最优权重和预期收益、风险
optimal_return = exp_returns * w;
optimal_risk = sqrt(w' * cov_matrix * w);
disp(['Optimal Weights: ', num2str(w')]);
disp(['Expected Return: ', num2str(optimal_return)]);
disp(['Expected Risk: ', num2str(optimal_risk)]);

步骤 3:绘制有效前沿(Efficient Frontier)

% 生成不同目标收益率下的有效前沿
target_returns = linspace(min(exp_returns), max(exp_returns), 50);
risks = zeros(size(target_returns));
weights = zeros(num_assets, length(target_returns));

for i = 1:length(target_returns)
    rt = target_returns(i);
    w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);
    weights(:, i) = w;
    risks[i] = sqrt(w' * cov_matrix * w);
end

% 绘制有效前沿
figure;
plot(risks, target_returns, 'LineWidth', 2);
title('Efficient Frontier');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;

步骤 4:比较不同投资组合策略

% 等权重策略
w_eq = ones(num_assets, 1) / num_assets;
return_eq = exp_returns * w_eq;
risk_eq = sqrt(w_eq' * cov_matrix * w_eq);

% 风险最小化策略
w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);
return_min_risk = exp_returns * w_min_risk;
risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);

% 绘制比较图
figure;
plot(risks, target_returns, 'LineWidth', 2);
hold on;
scatter(risk_eq, return_eq, 50, 'r', 'filled');
scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');
title('Comparison of Investment Strategies');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;

步骤 5:回测和风险评估

% 从历史数据中取出一部分作为回测数据
backtest_returns = returns(end-12:end,:); % 假设最近一年(12个月)数据用于回测

% 根据优化模型得到的权重进行回测
portfolio_returns = backtest_returns * w;
portfolio_cumulative_returns = cumprod(1 + portfolio_returns) - 1;

% 绘制回测结果
figure;
plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);
title('Backtesting Portfolio Cumulative Returns');
xlabel('Time (months)');
ylabel('Cumulative Returns');
grid on;

步骤 6:计算夏普比率和最大回撤

% 计算夏普比率(假设无风险利率为 0.03)
risk_free_rate = 0.03 / 12; % 月利率
excess_returns = portfolio_returns - risk_free_rate;
sharpe_ratio = mean(excess_returns) / std(excess_returns);

% 计算最大回撤
cumulative_returns = cumprod(1 + portfolio_returns) - 1;
drawdowns = max(max(cumulative_returns) - cumulative_returns);
max_drawdown = max(drawdowns);

disp(['Sharpe Ratio: ', num2str(sharpe_ratio)]);
disp(['Maximum Drawdown: ', num2str(max_drawdown)]);

步骤 7:应用模型进行投资决策支持和资产再平衡

% 输出最优投资组合权重
disp('Optimal Portfolio Weights:');
disp(w);

% 根据权重分配投资金额(假设总金额为100万元)
total_investment = 1e6;
investment_allocation = total_investment * w;
fprintf('Investment Allocation:\n');
for i = 1:num_assets
    fprintf('Asset %d: %.2f\n', i, investment_allocation(i));
end

% 设定再平衡周期(例如每季度)
rebalance_period = 3; % 每3个月进行一次再平衡
for t = rebalance_period:rebalance_period:length(prices)
    current_prices_plot = prices(t-rebalance_period+1:t,:);
    current_returns = diff(log(current_prices_plot)); % 计算最新收益率
    current_exp_returns = mean(current_returns);
    current_cov_matrix = cov(current_returns);
    
    % 使用最新数据重新进行优化
    w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

    % 更新投资组合权重
    disp(['Rebalanced Weights at Time ', num2str(t)]);
    disp(w');
end

% 持续监控投资组合的风险和波动
for t = 1:length(prices)
    % 计算逐月收益率
    monthly_returns = mean(returns(t,:));
    monthly_risks = std(returns(t,:));
    
    % 输出月度收益和风险
    fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);
    
    % 如果风险超出预期范围,采取相应措施
    % expected_risk_range 是事先定义的风险取值区间
    if monthly_risks > expected_risk_range
        disp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');
    end
end

实例总结

通过上述步骤和实例,我们展示了如何使用Markowitz均值-方差模型进行投资组合优化的全过程,包括模型建立、代码实现、回测、风险评估和实际应用。以下是该实例的总结:

步骤说明示例代码
数据导入从CSV文件中导入资产收益率数据data = readtable('assets_data.csv'); returns = data{:,:};
模型建立建立Markowitz均值-方差模型,求解模型最优权重w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);
绘制有效前沿生成不同目标收益率下的有效前沿plot(risks, target_returns, 'LineWidth', 2);
比较不同策略比较等权重策略、风险最小化策略scatter(risk_eq, return_eq, 50, 'r', 'filled'); scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
回测使用历史数据检验投资策略的有效性和稳定性portfolio_returns = backtest_returns * w;
风险评估使用夏普比率、最大回撤等指标评估投资组合的风险和收益sharpe_ratio = mean(excess_returns) / std(excess_returns); max_drawdown = max(drawdowns);
投资决策支持根据优化模型的建议,分配资金到不同资产并进行定期再平衡investment_allocation = total_investment * w;
风险监控持续监控投资组合的风险和波动,并根据市场变化进行调整fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);

通过这些方法,我们能够构建一个优化的投资组合,在给定的目标收益率下最小化投资风险。以下是一些关键的策略和应用实例总结:

投资决策支持

  1. 计算并输出最优投资组合权重
    • 根据优化结果,分配资金到不同资产。

    % 输出最优投资组合权重
    disp('Optimal Portfolio Weights:');
    disp(w);

    % 根据权重分配投资金额(假设总金额为100万元)
    total_investment = 1e6;
    investment_allocation = total_investment * w;
    fprintf('Investment Allocation:\n');
    for i = 1:num_assets
        fprintf('Asset %d: %.2f\n', i, investment_allocation(i));
    end

资产再平衡

  1. 定期调整投资组合
    • 随着市场条件的变化,定期重新优化和调整资产权重,使投资组合始终符合最优策略。

    % 设定再平衡周期(例如每季度)
    rebalance_period = 3; % 每3个月进行一次再平衡
    for t = rebalance_period:rebalance_period:length(prices)
        current_prices_plot = prices(t-rebalance_period+1:t,:);
        current_returns = diff(log(current_prices_plot)); % 计算最新收益率
        current_exp_returns = mean(current_returns);
        current_cov_matrix = cov(current_returns);
        
        % 使用最新数据重新进行优化
        w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);

        % 更新投资组合权重
        disp(['Rebalanced Weights at Time ', num2str(t)]);
        disp(w');
    end

风险监控

  1. 持续监控投资组合的风险
    • 定期计算并输出投资组合的实际收益和风险,根据市场变化及预测及时调整策略。

    for t = 1:length(prices)
        % 计算逐月收益率
        monthly_returns = mean(returns(t,:));
        monthly_risks = std(returns(t,:));
        
        % 输出月度收益和风险
        fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);
    
        % 如果风险超出预期范围,采取相应措施
        % expected_risk_range 是事先定义的风险取值区间
        if monthly_risks > expected_risk_range
            disp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');
        end
    end

总结

        本文详细介绍了投资组合优化的全过程,包括问题分析、模型选择、Matlab代码实现、绘制有效前沿、策略比较、回测、风险评估以及实际应用。通过实例,我们展示了如何使用Markowitz均值-方差模型优化投资组合,并利用Matlab工具进行建模和分析。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值