目录
函数与极限
函数与极限是高等数学的基础,也是考研数学数一中必考的内容。本章主要介绍函数的概念、极限的概念、连续函数的概念以及极限的应用。
1. 函数的概念
1.1 函数的定义
函数 是指一个集合到另一个集合的映射,它将一个集合中的每个元素都对应到另一个集合中的唯一一个元素。
更准确地说,函数 f 是一个从集合 X 到集合 Y 的映射,满足以下条件:
- 定义域: 集合 X 中的元素称为函数 f 的定义域。
- 值域: 集合 Y 中的元素称为函数 f 的值域。
- 对应关系: 函数 f 将定义域 X 中的每个元素 x 都对应到值域 Y 中的一个元素 y,记为 y = f(x)。
例如:
- 函数 f(x) = x^2: 定义域为所有实数,值域为所有非负实数。
- 函数 g(x) = sin(x): 定义域为所有实数,值域为 [-1, 1]。
1.2 函数的表示方法
函数可以用以下几种方法表示:
- 解析式: 用数学表达式来表示函数,例如 f(x) = x^2。
- 图像: 用坐标系中的曲线来表示函数,例如 y = x^2 的图像是一条抛物线。
- 表格: 用表格来表示函数,例如:
x | f(x) |
---|---|
1 | 1 |
2 | 4 |
3 | 9 |
1.3 函数的分类
函数可以根据不同的性质进行分类:
-
奇偶性:
- 奇函数: 满足 f(-x) = -f(x) 的函数。
- 偶函数: 满足 f(-x) = f(x) 的函数。
-
单调性:
- 单调递增函数: 当 x1 < x2 时,有 f(x1) < f(x2) 的函数。
- 单调递减函数: 当 x1 < x2 时,有 f(x1) > f(x2) 的函数。
-
周期性:
- 周期函数: 存在一个非零常数 T,使得对于任意 x,有 f(x + T) = f(x) 的函数。
-
有界性:
- 有界函数: 存在一个常数 M,使得对于任意 x,有 |f(x)| ≤ M 的函数。
1.4 函数的运算
函数可以进行以下运算:
- 加减乘除: 两个函数 f(x) 和 g(x) 可以进行加减乘除运算,得到新的函数。
- 复合函数: 将一个函数的输出作为另一个函数的输入,得到新的函数。
例如:
- 函数 f(x) = x^2 和 g(x) = sin(x) 的和为 f(x) + g(x) = x^2 + sin(x)。
- 函数 f(x) = x^2 和 g(x) = sin(x) 的复合函数为 f(g(x)) = sin^2(x)。
2. 极限的概念
2.1 极限的定义
极限 是指函数在自变量趋于某个值时的函数值的变化趋势。
更准确地说,函数 f(x) 在 x 趋于 a 时的极限为 L,记为:
lim(x->a) f(x) = L
这意味着当 x 无限接近 a 时,f(x) 无限接近 L。
例如:
- 函数 f(x) = x^2 在 x 趋于 2 时的极限为 4,记为:
lim(x->2) x^2 = 4
这意味着当 x 无限接近 2 时,x^2 无限接近 4。
2.2 极限的性质
极限具有以下重要性质:
-
极限的唯一性: 如果函数 f(x) 在 x 趋于 a 时的极限存在,那么这个极限是唯一的。
-
极限的运算性质:
- 极限的和: lim(x->a) [f(x) + g(x)] = lim(x->a) f(x) + lim(x->a) g(x)
- 极限的差: lim(x->a) [f(x) - g(x)] = lim(x->a) f(x) - lim(x->a) g(x)
- 极限的积: lim(x->a) [f(x) * g(x)] = lim(x->a) f(x) * lim(x->a) g(x)
- 极限的商: lim(x->a) [f(x) / g(x)] = lim(x->a) f(x) / lim(x->a) g(x),其中 lim(x->a) g(x) ≠ 0。
2.3 极限的计算方法
- 直接代入法: 如果函数 f(x) 在 x = a 处连续,那么 lim(x->a) f(x) = f(a)。
- 等价无穷小替换法: 如果函数 f(x) 和 g(x) 在 x 趋于 a 时都是无穷小,并且 lim(x->a) [f(x) / g(x)] = 1,那么 f(x) 和 g(x) 称为等价无穷小。在计算极限时,可以用等价无穷小替换法将 f(x) 替换为 g(x)。
- 洛必达法则: 如果函数 f(x) 和 g(x) 在 x 趋于 a 时都趋于 0 或无穷大,并且 f'(x) 和 g'(x) 在 x 趋于 a 时都存在,那么:
lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)]
例如:
-
计算 lim(x->0) (sin(x) / x):
- 直接代入法:sin(0) / 0 = 0 / 0,无法计算。
- 等价无穷小替换法:sin(x) 和 x 在 x 趋于 0 时都是等价无穷小,因此 lim(x->0) (sin(x) / x) = lim(x->0) (x / x) = 1。
- 洛必达法则:lim(x->0) (sin(x) / x) = lim(x->0) (cos(x) / 1) = 1。
2.4 极限的应用
- 求函数的渐近线: 如果函数 f(x) 在 x 趋于无穷大时,lim(x->∞) f(x) = L,那么直线 y = L 称为函数 f(x) 的水平渐近线。如果函数 f(x) 在 x 趋于 a 时,lim(x->a) f(x) = ∞,那么直线 x = a 称为函数 f(x) 的垂直渐近线。
- 判断函数的连续性: 如果函数 f(x) 在 x = a 处连续,那么 lim(x->a) f(x) = f(a)。
3. 连续函数
3.1 连续函数的定义
连续函数 是指函数在某点处连续的函数。
更准确地说,函数 f(x) 在 x = a 处连续,如果满足以下条件:
- 函数 f(x) 在 x = a 处有定义。
- lim(x->a) f(x) 存在。
- lim(x->a) f(x) = f(a)。
例如:
-
函数 f(x) = x^2 在 x = 2 处连续,因为:
- f(2) = 4 有定义。
- lim(x->2) x^2 = 4 存在。
- lim(x->2) x^2 = f(2) = 4。
3.2 连续函数的性质
连续函数具有以下重要性质:
- 介值定理: 如果函数 f(x) 在闭区间 [a, b] 上连续,并且 f(a) ≠ f(b),那么对于任意介于 f(a) 和 f(b) 之间的数 y,都存在一个点 c ∈ [a, b],使得 f(c) = y。
- 零点定理: 如果函数 f(x) 在闭区间 [a, b] 上连续,并且 f(a) * f(b) < 0,那么在区间 (a, b) 内至少存在一个点 c,使得 f(c) = 0。
- 最大值最小值定理: 如果函数 f(x) 在闭区间 [a, b] 上连续,那么 f(x) 在 [a, b] 上必取得最大值和最小值。
3.3 连续函数的分类
连续函数可以根据不同的性质进行分类:
- 间断点: 函数在某点处不连续的点称为间断点。
- 可去间断点: 如果函数 f(x) 在 x = a 处有定义,并且 lim(x->a) f(x) 存在,但 lim(x->a) f(x) ≠ f(a),那么 x = a 称为 f(x) 的可去间断点。
- 跳跃间断点: 如果函数 f(x) 在 x = a 处有定义,并且 lim(x->a+) f(x) 和 lim(x->a-) f(x) 都存在,但 lim(x->a+) f(x) ≠ lim(x->a-) f(x),那么 x = a 称为 f(x) 的跳跃间断点。
- 无穷间断点: 如果函数 f(x) 在 x = a 处有定义,并且 lim(x->a) f(x) = ∞,那么 x = a 称为 f(x) 的无穷间断点。
3.4 连续函数的应用
- 求函数的极值: 如果函数 f(x) 在 x = a 处连续,并且 f'(a) = 0 或 f'(a) 不存在,那么 x = a 称为 f(x) 的驻点。驻点可能是极值点,也可能不是极值点。
- 求函数的拐点: 如果函数 f(x) 在 x = a 处连续,并且 f''(a) = 0 或 f''(a) 不存在,那么 x = a 称为 f(x) 的拐点。拐点是函数曲线的凹凸性发生变化的点。
4. 极限的应用
4.1 求函数的渐近线
- 水平渐近线: 如果函数 f(x) 在 x 趋于无穷大时,lim(x->∞) f(x) = L,那么直线 y = L 称为函数 f(x) 的水平渐近线。
- 垂直渐近线: 如果函数 f(x) 在 x 趋于 a 时,lim(x->a) f(x) = ∞,那么直线 x = a 称为函数 f(x) 的垂直渐近线。
4.2 判断函数的连续性
如果函数 f(x) 在 x = a 处连续,那么 lim(x->a) f(x) = f(a)。
4.3 求函数的导数
导数是函数在某点处的变化率,它可以用来求函数的极值、拐点、单调区间、凹凸区间等。
4.4 求函数的积分
积分是导数的逆运算,它可以用来求函数的面积、体积、弧长、曲面面积等。
4.5 求函数的级数展开式
级数展开式可以用来近似地表示函数,它可以用来求函数的积分、求解微分方程等。
5. 考研真题分析
5.1 考查重点
- 函数的概念和性质
- 极限的概念和性质
- 极限的计算方法
- 连续函数的概念和性质
- 极限的应用:求函数的渐近线、判断函数的连续性
5.2 难点
- 极限的计算:洛必达法则、等价无穷小替换法
- 连续函数的性质:介值定理、零点定理、最大值最小值定理
- 极限的应用:求函数的渐近线、判断函数的连续性
5.3 解题技巧
- 掌握极限的定义和性质
- 熟练运用极限的计算方法
- 理解连续函数的概念和性质
- 灵活运用极限的应用
6. 总结
概念 | 描述 |
---|---|
函数 | 一个集合到另一个集合的映射 |
极限 | 函数在自变量趋于某个值时的函数值的变化趋势 |
连续函数 | 函数在某点处连续的函数 |
极限的应用 | 求函数的渐近线、判断函数的连续性、求函数的导数、求函数的积分、求函数的级数展开式 |