不同进制间的转换

基本知识

十进制

基数为10,逢10进1。在十进制中,一共使用10个不同的数字符号,这些符号处于不同位置时,其权值各不相同。

二进制

基数为2,逢2进1。在二进制中,使用0和1两种符号。

八进制

基数为8,逢8进1。八进制使用8种不同的符号,它们与二进制的转换关系为:

0:000 1:001 2:010 3:011 4:100 5:101 6:110 7:111

十六进制

基数为16,逢16进1。十六进制使用16种不同的符号,它们与二进制的转换关系为:

0:0000 1:0001 2:0010 3:0011 4:0100 5:0101 6:0110 7:0111

8:1000 9:1001 A:1010 B:1011 C:1100 D:1101 E:1110 F:1111

二进制数的运算

算术运算:加法

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10(向高位进1)

算术运算:减法

0 ? 0 = 0 0 ? 1 = 1(向高位借1) 1 ? 0 = 1 1 - 1 = 0

逻辑运算:或(∨)

0 ∨ 0 = 0 0 ∨ 1 = 1 1 ∨ 0 = 1 1 ∨ 1 = 1

逻辑运算:与(∧)

0 ∧ 0 = 0 0 ∧ 1 = 0 1 ∧ 0 = 0 1 ∧ 1 = 1

逻辑运算:取反

0取反为1 1取反为0

注意:算术运算会发生进位、借位,逻辑运算则按位独立进行,不发生位与位之间的关系,其中,0表示逻辑假,1表示逻辑真。

2.转换为十进制

二进制化为十进制

例:将二进制数101.01转换成十进制数

(101.01)2 = 1×22 + 0×21 + 1×20 + 0×2-1 + 1×2-2 = (5.25)10

八进制化为十进制

例:将八进制数12.6转换成十进制数

(12.6)8 = 1×81 + 2×80 + 6×8-1 = (10.75)10

十六进制化为十进制

例:将十六进制数2AB.6转换成十进制数:

(2AB.6)16 = 2×162 + 10×161 + 11×160 + 6×16-1 = (683.375)10

3.转换为二进制

八进制化为二进制

规则:按照顺序,每1位八进制数改写成等值的3位二进制数,次序不变。

例: (17.36)8 = (001 111 .011 110)2 = (1111.01111)2

十六进制化为二进制

规则:每1位十六进制数改写成等值的4位二进制数,次序不变。

例: (3A8C.D6)16 = (0011 1010 1000 1100.1101 0110)2 = (11101010001100.1101011)2

十进制整数化为二进制整数

规则:除二取余,直到商为零为止,倒排。

例:将十进制数86转化为二进制

2 | 86…… 0

2 | 43…… 1

2 | 21…… 1

2 | 10…… 0

2 | 5 …… 1

2 | 2 …… 0

2 | 1 …… 1

结果:(86)10 = (1010110)2

十进制小数化为二进制小数

规则:乘二取整,直到小数部分为零或给定的精度为止,顺排。

例:将十进制数0.875转化为二进制数

0.875

× 2

1.75

× 2

1.5

×2

1.0

结果:(0.875)10 = (0.111)2

4.转换为八进制

二进制化为八进制

整数部份从最低有效位开始,以3位一组,最高有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的整数。

小数部份从最高有效位开始,以3位一组,最低有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的小数。

例:(11001111.01111)2 = (11 001 111.011 110)2 = (317.36)8

十六进制化为八进制

先用1化4方法,将十六进制化为二进制;再用3并1方法,将二进制化为8制。

例: (1CA)16 = (000111001010)2 = (712)8

说明:小数点前的高位零和小数点后的低位零可以去除。

十进制化八进制

方法1:采用除8取余法。

例:将十进制数115转化为八进制数

8| 115…… 3

8| 14 …… 6

8| 1 …… 1

结果:(115)10 = (163)8

方法2:先采用十进制化二进制的方法,再将二进制数化为八进制数

例:(115)10 = (1110011)2 = (163)8

5.转换为十六进制

二进制化为十六进制

整数部份从最低有效位开始,以4位为一组,最高有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的整数。

小数部份从最高有效位开始,以4位为一组,最低有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的小数。

例:(11001111.01111)2 = (1100 1111 .0111 1000)2 = (CF.78)16

八进制化为十六进制

先将八进制化为二进制,再将二进制化为十六进制。

例:(712)8 = (111001010)2 = (1CA)16

十进制化为十六进制

方法1:采用除16取余法。

例:将十进制数115转化为八进制数

16| 115…… 3

16| 7 …… 7

结果:(115)10 = (73)16

方法2:先将十进制化为二进制,再将二进制化为十六进制。

例:(115)10 = (1110011)2 = (73)16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值