特征工程

1、特征提取

设定因变量

提取自变量:

       因变量与自变量的相关系数

       决策树(基于熵)

连续值处理为离散值

业务逻辑

2、缺失值处理

平均值

业务逻辑统一值

模型拟合

3、异常值识别

1、基本统计量的分析(pandas.dataframe.describe())

数量,平均值,最大最小值,四分位值

2、箱线图 

上界:上四分位+1.5四分位间距

下界:下四分位-1.5四分位间距

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值