1、应用包:
from sklearn import tree
2、训练:
clf = tree.DecisionTreeClassifier(criterion='entropy')
clf.fit(x_train,y_train)
''''' 系数反映每个特征的影响力。越大表示该特征在分类中起到的作用越大 '''
print(clf.feature_importances_)
3、预测:
'''''测试结果的打印'''
answer = clf.predict(x_test)
''''' 把决策树结构写入文件 '''
with open("./features/1113/tree.dot", 'w') as f:
f = tree.export_graphviz(clf, out_file=f)
4、分类准则:基于划分的分类算法
每个叶子节点存放一个类编号
1、信息增益:以某个特征划分情况下,样本划分为其类别的熵(样本携带的信息,信息越大不确定性越大)之差
2、增益率:消除信息增益偏向于取值较多的特征
3、gini:随机取出来样本被分错的概率