深度学习第四节-SVM

一、SVM与KNN对比

KNN:

 SVM:

KNN分类问题,离哪些点较近,就归哪一类。

SVM分类问题,找决策边界,把数据进行划分开。

二、SVM分类的原理

支持向量积

        将两组数据划分开,怎么样的决策边界才会更好呢?

        支持向量积

         支持向量

        寻找支持向量

        选出最好的决策边界

支持向量是要大的,还是要小的?

        要小的,要考虑离自己最近的雷才最安全。

决策边界是要大的还是小的?

        要大的,要最宽的道路才能行动的更快,更不容易踩雷。

是先找支持向量,还是先找决策边界呢?

怎么去找支持向量呢?

        距离与数据定义

                在平面上构造了直线

                点到平面的距离公式,借助了向量和法向量进行相关求解。

1.距离计算(点到平面的距离)

        

 2.目标函数

目的:找到一条线,使得离该线最近的点能够最远。

 放缩变换和优化目标

三、百度飞桨SVM案例运行

1.import导包

import numpy as np                   #数据处理包
from matplotlib import colors        #作图相关包
from sklearn import svm              #sklearn工具包
from sklearn import model_selection  #sklearn工具包
import matplotlib.pyplot as plt      #作图相关包
import matplotlib as mpl             #作图相关包

2.加载数据、切分数据集 

# ======将字符串转化为整形==============
def iris_type(s):
    it = {b'Iris-setosa':0, b'Iris-versicolor':1,b'Iris-virginica':2} 
    return it[s]
    
# 1 数据准备
# 1.1 加载数据
data = np.loadtxt('/home/aistudio/data/data2301/iris.data',  # 数据文件路径i
                  dtype=float,    # 数据类型
                  delimiter=',',  # 数据分割符
                  converters={4:iris_type}) # 将第五列使用函数iris_type进行转换
# 1.2 数据分割
x, y = np.split(data, (4, ), axis=1) # 数据分组 第五列开始往后为y 代表纵向分割按列分割
x = x[:, :2]
x_train, x_test, y_train, y_test=model_selection.train_test_split(x, y, random_state=1, test_size=0.2)

3.构建SVM分类器,训练函数

# SVM分类器构建
def classifier():
    clf = svm.SVC(C=0.8,                          # 误差项惩罚系数
                  kernel='linear',                # 线性核 高斯核 rbf
                  decision_function_shape='ovr')  # 决策函数
    return clf
    
# 开始训练模型
def train(clf, x_train, y_train):
    clf.fit(x_train, y_train.ravel()) # 训练集特征向量和 训练集目标值

4.初始化分类器实例,训练模型

# 2 定义模型 SVM模型定义
clf = classifier()
# 3 训练模型
train(clf, x_train, y_train)

5.展示训练结果及验证结果

#======判断a,b是否相等计算acc的均值
def show_accuracy(a, b, tip):
    acc = a.ravel() == b.ravel()
    print('%s Accuracy:%.3f' %(tip, np.mean(acc)))
    
#分别打印训练集和测试集的准确率score(x_train, y_train)表示输出 x_train,y_train在模型上的准确率
def print_accuracy(clf, x_train, y_train, x_test, y_test):
    print('training prediction:%.3f' %(clf.score(x_train, y_train)))
    print('test data prediction:%.3f' %(clf.score(x_test, y_test)))
    # 原始结果和预测结果进行对比 predict() 表示对x_train样本进行预测,返回样本类别
    show_accuracy(clf.predict(x_train), y_train, 'traing data')
    show_accuracy(clf.predict(x_test), y_test, 'testing data')
    # 计算决策函数的值 表示x到各个分割平面的距离
    print('decision_function:\n', clf.decision_function(x_train))
    
def draw(clf, x):   
    iris_feature = 'sepal length', 'sepal width', 'petal length', 'petal width'
    # 开始画图
    x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
    x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
    # 生成网格采样点
    x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]  
    # 测试点
    grid_test = np.stack((x1.flat, x2.flat), axis = 1)
    print('grid_test:\n', grid_test)
    # 输出样本到决策面的距离
    z = clf.decision_function(grid_test)
    print('the distance to decision plane:\n', z)
    grid_hat = clf.predict(grid_test)
    # 预测分类值 得到[0, 0, ..., 2, 2]
    print('grid_hat:\n', grid_hat)
    # 使得grid_hat 和 x1 形状一致
    grid_hat = grid_hat.reshape(x1.shape)
    cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
    cm_dark = mpl.colors.ListedColormap(['g', 'b', 'r'])
    
    plt.pcolormesh(x1, x2, grid_hat, cmap = cm_light) 
    plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolor='k', s=50, cmap=cm_dark )
    plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolor='none', zorder=10 )
    plt.xlabel(iris_feature[0], fontsize=20) # 注意单词的拼写label
    plt.ylabel(iris_feature[1], fontsize=20)
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    plt.title('Iris data classification via SVM', fontsize=30)
    plt.grid()
    plt.show()
 
# 4 模型评估
print('-------- eval ----------')
print_accuracy(clf, x_train, y_train, x_test, y_test)
# 5 模型使用
print('-------- show ----------')
draw(clf, x) 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SVM(支持向量机)是一种经典的机器学习算法,在许多领域都有广泛的应用。以下是SVM的应用领域、发展趋势、机遇和挑战的概述: 应用领域: 1. 图像分类和识别:SVM在图像分类、目标识别和人脸识别等领域有着广泛的应用,可以通过训练一个二分类或多分类的SVM模型来实现图像分类任务。 2. 文本和情感分析:SVM可以用于文本分类、情感分析和垃圾邮件过滤等任务,通过将文本数据转化为特征向量,并使用SVM进行分类。 3. 生物信息学:SVM在生物信息学中常用于蛋白质分类和DNA序列分析等任务,可以帮助研究人员发现和理解生物信息中的模式和关联。 4. 金融市场预测:SVM可以应用于金融市场的预测和交易决策,通过学习历史数据中的模式和趋势,从而进行市场趋势预测和投资策略制定。 5. 医学诊断和生物医学工程:SVM可以应用于医学图像分析、疾病诊断和生物医学信号处理等领域,帮助医生和研究人员做出准确的判断和决策。 发展趋势: 1. 多类别分类:SVM在多类别分类问题上的应用逐渐增多,不仅限于二分类问题。研究人员不断改进SVM算法,以适应多类别分类任务的需求。 2. 核函数和特征选择:研究人员正在探索更多的核函数和特征选择方法,以提高SVM的性能和适用范围。特别是在处理非线性问题时,使用适当的核函数可以提高分类器的准确性。 3. 结合深度学习:深度学习方法在许多领域取得了巨大成功,但SVM仍然具有其独特的优势。研究人员正在尝试将SVM与深度学习方法相结合,形成混合模型,以发挥两者的优势。 机遇: 1. 大规模数据集:随着大数据时代的到来,SVM具有处理大规模数据集的能力。SVM可以通过高效的优化算法和核技巧,在大规模数据上进行训练和预测,为实际应用提供支持。 2. 可解释性:相比于一些黑盒模型如深度神经网络,SVM具有较高的可解释性。SVM的决策边界和支持向量可以提供对分类结果的解释和理解。 挑战: 1. 参数选择:SVM有许多参数需要调整,如核函数的选择、正则化参数C的选择等。合适的参数选择对模型的性能至关重要,但对于复杂问题和大规模数据集,参数选择可能变得困难。 2. 计算效率:SVM的训练时间复杂度较高,尤其在大规模数据集上。如何提高SVM的计算效率,是一个挑战。 3. 不平衡数据集:当训练数据集不平衡时(某个类别的样本数量远远多于其他类别),SVM的性能可能会受到影响。如何处理不平衡数据集是一个需要解决的问题。 总体而言,SVM作为一种经典的机器学习算法,在各个领域都有广泛的应用。随着技术的进步和研究的深入,SVM仍然具有发展的潜力,并且可以与其他方法相结合,为实际问题提供更好的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值