weilansky91
码龄8年
关注
提问 私信
  • 博客:19,930
    社区:322
    动态:216
    20,468
    总访问量
  • 12
    原创
  • 1,749,173
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-01-20
博客简介:

weilansky91的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得6次评论
  • 获得16次收藏
创作历程
  • 1篇
    2024年
  • 15篇
    2021年
成就勋章
TA的专栏
  • python
    8篇
  • 语法基础
    5篇
  • 常见问题
    2篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

每日一题-数据分析

解析:数据治理是在管理数据资产过程中行使权力和管控,包括计划、监控和实施;数据管理是为了交付、控制、保护并提升数据和信息资产价值,在其整个生命周期中制订计划、制度、规程和实践活动,并执行和监督的过程。,A选项,数据治理保证数据是被管理的,B选项,数据管理管理数据以达到既定目标。C. 数据治理是总体视角的,数据管理是执行层面的。关于数据治理和数据管理以下说法正确的是( )B. 数据治理管理数据以达到既定目标。A. 数据管理保证数据是被管理的。D. 以上全是。
原创
发布博客 2024.02.19 ·
7437 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

我在Python进阶技能树上立了学习Flag,大家来支持我吧:https://bbs.csdn.net/topics/613011464

发布动态 2023.02.04

pycharm 安装插件

pycharm 安装插件的方法主要有两种:file --> settings --> plugins --> Install JetBrains plugins… --> 搜索要安装的插件,点击安装file --> settings --> plugins -->Install plugins from disk… --> 选择下载好的插件安装(格式为.zip)我自己使用第二种方法安装了 IdeaVim 和 Markdown support
转载
发布博客 2021.07.14 ·
1462 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

pandas取文件中某几列

方法1df = pd.DataFrame(df,columns=[‘body’,‘predict’])方法2df = df[[‘predict’, ‘body’]]方法3df = df.loc[:, [‘predict’, ‘body’]]方法4df = df.iloc[:, [1,3]]方法5df = pd.read_excel(filename, header=0, usecols=[‘predict’,‘body’])————————————————...
转载
发布博客 2021.04.26 ·
569 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pandas to_excel

1、pandas写入excel多级表头,采用笛卡尔积方法#写入header2多级表头array=[[875,76750,123,12356],[876,67543,124,98765],[877,98076,125,65432]]header2=pd.DataFrame(array,index=['1','2','3'])header2.columns=pd.MultiIndex.from_product([['jd','tb'],['销量','销售额']])header2.index.name
原创
发布博客 2021.04.24 ·
1343 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

pandas_readexcel

1、read_excel()参数usecols:指定只使用哪些列None:全部(默认)str:k=pd.read_excel('head.xlsx',sheet_name=2,header=1,usecols=['月份','销量','销售额'])#head=1代表表头从第二行开始
原创
发布博客 2021.04.24 ·
259 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

pandas-excel_1

1、read_excel()df=pd.read_excel('sheet_name.xlsx')#默认是取第一个sheetdf=pd.read_excel('sheet_name.xlsx',sheet_name='3月')#取sheet名为3月的sheetdf=pd.read_excel('sheet_name.xlsx',sheet_name=1)#取第二个sheet(默认下标从0开始计算)df=pd.read_excel('sheet_name.xlsx',sheet_name=[1,'3月
原创
发布博客 2021.04.04 ·
90 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pandas3

一、约定引入import pandas as pdimport numpy as npfrom pandas import DataFrame,Series二、构造一个数据框n1=np.random.random((20,6))s1=DataFrame(n1)s2=DataFrame(n1,columns=['a','b','c','d','e','f'])三、缺失值的处理1、利用reindex()方法对指定轴上的索引进行修改(增加或删除)s3=s2.reindex(index=[1
原创
发布博客 2021.04.03 ·
88 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

random函数

#先保存下来1.np.random.random()函数参数np.random.random((100, 20))上面这个就代表生成100行 20列的浮点数,浮点数都是从0-1中随机。2.numpy.random.rand()函数用法numpy.random.rand(d0, d1, …, dn):生成一个[0,1)之间的随机浮点数或N维浮点数组。3.numpy.random.randn()函数用法:numpy.random.randn(d0, d1, …, dn):生成一个浮点数或N维浮
转载
发布博客 2021.03.30 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pandas(2)

import pandas as pdimport numpy as npfrom pandas import DataFrame,Seriesn1=np.random.random((20,6))s1=DataFrame(n1)print(s1)#output如下 0 1 2 3 4 50 0.210101 0.241955 0.417872 0.235394 0.131291
原创
发布博客 2021.03.25 ·
165 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

pandas(1)

最近几天学习了pandas的部分知识,总结如下:一、数据结构1、Series:一种类似于一维数组的对象,是由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成,仅由一组数据即可产生简单的Series2、DataFrame:一个表格型数据结构,含有一组有序的列,每类可以是不同的值类型(数值、字符串、布尔值等),DataFrame既有行索引也有列索引,可以被看成是由Series组成的字典。二、引入约定import pandas as pdfrom pandas import
原创
发布博客 2021.03.21 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python的reshape的用法

numpy中reshape函数的三种常见相关用法:1、numpy.arange(n).reshape(a, b) 依次生成n个自然数,并且以a行b列的数组形式显示arr=np.arange(32).reshape((4,8))#out# arr= [[ 0 1 2 3 4 5 6 7]# [ 8 9 10 11 12 13 14 15]# [16 17 18 19 20 21 22 23]# [24 25 26 27 28 29 30 31]]2、mat (or
转载
发布博客 2021.02.24 ·
745 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

re模块match、search、findall区别及sub

1、match:是从开头匹配,若开头不满足,则返回null;2、search: 在整个字符串中去匹配,匹配到一个即停止;3、findall:在整个字符串中匹配所有符合的,且以列表形式得到子串。eg:findallstring='one1two2three3four4'pattern =re.compile('\d+')print (re.findall(pattern,string))返回:[‘1’, ‘2’, ‘3’, ‘4’]若改用search,则返回结果为1,因为匹配到第一个数字即停
原创
发布博客 2021.01.21 ·
870 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

正则表达式

用来匹配字符串语法说明实例匹配字符串一般字符匹配自身abcabc.匹配任意除换行符“
”外的字符a.cabc\转义字符,使后一个字符改变原来的意思。如果字符串中有字符需要匹配,可以使用*或者字符集[]a.c a\ca.c, a\c[…]字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。第一个字符如果是^则表示取反,如[^abc]表示不是abc的其他字符。所有的特殊字符在字符集中都失
原创
发布博客 2021.01.17 ·
131 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

插入数据库操作

步骤如下:1、连接数据库conn=pymysql.connect(host=’’,user=’’,passwd=’’,db=’’,charset=’’)2、创建操作游标,创建mysql的操作连接cursor=conn.cursor()3、写sql语句插入操作,方法有以下几个:(方法一) 用format: 注意项是若参数是字符串形式,则前面括号里需要引号,否则报错sql='insert into jy(uid,price,createtime) values ({0},{1},"{2}")'.
原创
发布博客 2021.01.15 ·
1059 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数组的形状与计算

1、数组的形状t8=np.array([random.random() for i in range(10)])print(“t8=”,t8)t9=np.round(t8,2)print(“t9=”,t9)m5=np.arange(12)print(“m5=”,m5)print(m5.shape)t5=m5.reshape((12,1))print(t5)t6=m5.flatten()print(“t6=”,t6)2、数组的计算若相同位置,相应计算(广播机制);若有一维度相同,另一
原创
发布博客 2021.01.15 ·
403 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

‘Cursor‘ object has no attribute ‘excute‘

一个未解决问题在做连接数据库插入操作时,用此方法试了很久,不清楚为什么一直报错,代码如下:sql='insert into jy(uid,price,createtime) values (%s,%s,"%s") ' % ('1',1.28,'2020-01-09')print (sql)cursor.excute(sql)目前还不清楚原因,也没查出来合理解释,留此记录,以后继续深究。...
原创
发布博客 2021.01.15 ·
4994 阅读 ·
6 点赞 ·
2 评论 ·
3 收藏
加载更多