- 博客(104)
- 资源 (2)
- 收藏
- 关注
原创 分布式学习资料有时间要看
“Time Clocks and the Ordering of Events in a Distributed System”
2017-06-01 16:26:38 594
转载 C# Windows服务 弹出消息提醒框
出处:http://blog.csdn.net/donghui6116773/article/details/53467069服务(Service)对于大家来说一定不会陌生,它是Windows 操作系统重要的组成部分。我们可以把服务想像成一种特殊的应用程序,它随系统的“开启~关闭”而“开始~停止”其工作内容,在这期间无需任何用户参与。 Windows 服务在后台执行着各种各
2017-03-13 09:32:57 7763 1
转载 探寻C++最快的读取文件的方案
出处:https://www.byvoid.com/zhs/blog/fast-readfile在竞赛中,遇到大数据时,往往读文件成了程序运行速度的瓶颈,需要更快的读取方式。相信几乎所有的C++学习者都在cin机器缓慢的速度上栽过跟头,于是从此以后发誓不用cin读数据。还有人说Pascal的read语句的速度是C/C++中scanf比不上的,C++选手只能干着急。难道C++真的
2017-02-22 10:55:10 510
转载 值得推荐的C/C++框架和库 (真的很强大)
出处:http://blog.csdn.net/xiaoxiaoyeyaya/article/details/42541419值得学习的C语言开源项目- 1. WebbenchWebbench是一个在Linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能,最多可以模拟3万个并发连接去测试网站的负载能力。
2017-02-22 10:37:39 1832
转载 在Windows上玩TensorFlow(一)——安装Docker
出处:Ron’s Blog: http://www.neilron.xyz/set-up-docker-on-windows/“谷歌”+“深度学习”,两个标签让2015年12月才由谷歌开源的深度学习工具TensorFlow在其发布之后就迅速地成为了全球最为炙手可热的开源项目,2016年4月,开源的TensorFlow又支持了分布式特性,向着生产环境下的应用更进一步。Te
2016-07-15 14:35:43 1680
转载 手机usb有线上网
出处:http://tieba.baidu.com/p/2291671076对于各位安卓手机的友友来说,如果身边没有免费的无线WIFI网络的话,是一件很痛苦的事情。而下面呢,给大家分享一个利用手机USB数据线连接电脑的宽带上网的小技巧。让你在玩手机、上网冲浪的同时,还可以充电哦!推荐给没有无线网络的同学们吧。 一:首先简单准备一下: ①在电脑端安装好与你手机型号相匹配的驱动
2016-06-28 11:06:00 2552
转载 二叉树的非递归遍历
出处:http://blog.csdn.net/sjf0115/article/details/8645991树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用。二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。二叉树的每个
2016-06-22 20:00:30 385
转载 python释放内存(2)
出处:http://www.cnblogs.com/vamei/p/3232088.html对象的内存使用赋值语句是语言最常见的功能了。但即使是最简单的赋值语句,也可以很有内涵。Python的赋值语句就很值得研究。a = 1整数1为一个对象。而a是一个引用。利用赋值语句,引用a指向对象1。Python是动态类型的语言(参考动态类型),对象与引用分离。Pyt
2016-06-15 17:08:18 2995
转载 python 释放内存(1)
出处:http://blog.csdn.net/nirendao/article/details/44426201/在上篇博客中,提到了对一个脚本进行的多次优化。当时以为已经优化得差不多了,但是当测试人员测试时,我才发现,踩到了Python的一个大坑。在上文的优化中,对每500个用户,会进行一些计算并记录结果在磁盘文件中。原本以为这么做,这些结果就在磁盘文件中了,而不会再继
2016-06-15 17:06:23 5070 1
转载 浅谈 C++ 中的 new/delete 和 new[]/delete[]
出处:http://blog.csdn.net/hazir/article/details/21413833在 C++ 中,你也许经常使用 new 和 delete 来动态申请和释放内存,但你可曾想过以下问题呢?new 和 delete 是函数吗?new [] 和 delete [] 又是什么?什么时候用它们?你知道 operator new 和 operator de
2016-06-13 15:28:23 325
转载 Android app导出apk方法
出处:http://my.oschina.net/u/199776/blog/339952一、背景很多时候,APK文件只存在于应用市场,在PC上无法直接下载。用手机下载下来后就直接安装了,也不能保存原始的APK文件。APK安装到手机后,Android系统会保存一份和原始APK一模一样的拷贝,位于data/app目录,文件名为“APK的包名-1.apk”或者“
2016-05-26 13:31:52 6158
转载 Android adb命令与操作
出处:http://blog.csdn.net/janronehoo/article/details/6863772adb是什么?:adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb我们可以在Eclipse中方面通过DDMS来调试Android程序,说白了就是debug工具。adb的工作方式比较特殊,采用监听Socket TCP 555
2016-05-26 10:59:26 334
转载 adb连接Android手机
出处:http://blog.csdn.net/stpeace/article/details/24815417adb是什么呢? 我就不多说了, 对于搞Android开发的人来说, 一定不陌生。 本文讲述如何用adb来连接手机。 利用adb来连接手机, 有两种方式: 1, wifi, 2, usb.
2016-05-26 10:52:15 566
原创 lintcode_单词切分
给出一个字符串s和一个词典,判断字符串s是否可以被空格切分成一个或多个出现在字典中的单词。您在真实的面试中是否遇到过这个题? Yes样例给出s = "lintcode"dict = ["lint","code"]返回 true 因为"lintcode"可以被空格切分成"lint code"思路过程直观的想法是直
2016-05-10 20:52:38 2467
原创 lintcode_和为零的子矩阵
描述 笔记 数据 评测给定一个整数矩阵,请找出一个子矩阵,使得其数字之和等于0.输出答案时,请返回左上数字和右下数字的坐标。您在真实的面试中是否遇到过这个题? Yes样例给定矩阵[ [1 ,5 ,7], [3 ,7 ,-8], [4 ,-8 ,9],]返回 [(1,1), (2,2)]普通解
2016-05-09 21:23:54 1381
转载 python时间函数
出处:http://www.cnblogs.com/herbert/p/3395268.html主要有以下三种方式:一,CPU时间time.clock()测量CPU时间,比较精准,通过比较程序运行前后的CPU时间差,得出程序运行的CPU时间。二, 时钟时间time.time()测量时钟时间,也就是通常的类似掐表计时。三,基准时间timeit.time
2016-05-04 16:54:40 428
原创 deep learning官网学习的辅助资料
http://blog.csdn.net/niuwei22007/article/category/5868713http://www.cnblogs.com/xueliangliu/archive/2013/04/03/2997437.html以后学习使用
2016-05-04 16:42:37 287
原创 受限玻尔兹曼机相关的学习资料
http://wenku.baidu.com/view/db591d95770bf78a652954ee.htmlhttp://www.tuicool.com/articles/VriUB3http://zhidao.baidu.com/share/83d3fc8ffee8e8c66d34c85b68c5bb0b.html以后学习使用
2016-05-04 16:40:50 370
转载 冒泡排序
出处:http://blog.csdn.net/morewindows/article/details/6657829冒泡排序是非常容易理解和实现,,以从小到大排序举例:设数组长度为N。1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
2016-03-25 15:49:30 325
转载 希尔排序
出处:http://blog.csdn.net/morewindows/article/details/6668714希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中
2016-03-25 15:11:35 327
转载 特征选择方法综述
出处:http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html1 综述(1) 什么是特征选择特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中
2016-03-07 15:29:18 698
转载 win8.1安装cvxopt
出处:http://www.cnblogs.com/hpblogs/p/4041540.html从www.python.org下载并安装Python。接下来,使用Python 2.7.5(32bit)版本(注意:64位win 7系统也可以直接安装).下载并安装MinGW编译器(www.mingw.org)下载并运行MinGW installer选择安装C编辑器(C co
2015-12-09 10:54:01 1583 1
转载 离散余弦变换
出处:DCT变换和FFT变换都属于变换压缩方法(TransformCompression),变换压缩的一个特点是将从前密度均匀的信息分布变换为密度不同的信息分布。在图像中,低频部分的信息量要大于高频部分的信息量,尽管低频部分的数据量比高频部分的数据量要小的多。例如删除掉占50%存储空间的高频部分,信息量的损失可能还不到5%。变换编码有很多种。K–L变换的压缩效率很高,但
2015-12-07 14:33:28 1917
转载 如何在Ubuntu或者Debian中启动后进入命令行
出处:https://linux.cn/article-4761-1.htmlLinux桌面自带了一个显示管理器(比如:GDM、KDM、LightDM),它们可以让计算机启动自动进入一个基于GUI的登录环境。然而,如果你要直接启动进入终端怎么办? 比如,你在排查桌面相关的问题或者想要运行一个不需要GUI的应用程序。注意虽然你可以通过按下Ctrl+Alt+F1到F6临时从
2015-12-04 14:44:35 1628 1
转载 机器学习的相似度度量
出处:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。
2015-12-02 21:09:08 21133
转载 各种距离
出处:http://blog.csdn.net/shiwei408/article/details/7602324欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。 简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看
2015-12-02 10:05:55 382
转载 数据降维方法总结
出处:http://blog.csdn.net/xiaowei_cqu/article/details/7522368/数据降维基本原理是将样本点从输入空间通过线性或非线性变换映射到一个低维空间,从而获得一个关于原数据集紧致的低维表示。数据降维工具箱drtoolbox中众多算法,这里简单做个分类。因为很多并没有仔细了解,在此次只对八种方法做分类:主成分分析(Pr
2015-11-16 16:25:53 1651 1
转载 强大的矩阵奇异值分解(SVD)及其应用
出处:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往
2015-11-16 14:26:34 1122
转载 支持向量机通俗导论
出处:http://blog.csdn.net/v_july_v/article/details/7624837#t17 支持向量机通俗导论(理解SVM的三层境界)作者:July ;致谢:pluskid、白石、JerryLead。出处:结构之法算法之道blog。前言 动笔写这个
2015-11-16 14:24:38 699
转载 深度学习资料
出处:http://fuliang.iteye.com/blog/1786631转载自http://baojie.org/blog/2013/01/27/deep-learning-tutorials/ Stanford Deep Learning wiki: http://deeplearning.stanford.edu/wiki/index.php/Mai
2015-11-02 20:36:33 649
转载 使用libcurl实现的下载器
出处:http://blog.csdn.net/robertbaker/article/details/43703907libcurl的主页:http://curl.haxx.se/头文件:/*********************************************************************** Copyright (C) 2014 -
2015-11-02 16:56:18 673
转载 程序员面试、算法研究、编程艺术、红黑树、数据挖掘5大系列集锦
出处:http://blog.csdn.net/v_july_v/article/details/6543438无私分享,造福天下 以下是本blog内的微软面试100题系列,经典算法研究系列,程序员编程艺术系列,红黑树系列,及数据挖掘十大算法等5大经典原创系列作品与一些重要文章的集锦:一、微软面试100题系列横空出世,席卷Csdn--评微软等数据结构+算法
2015-10-15 21:07:56 709
转载 从最大似然到EM算法浅解
出处:http://blog.csdn.net/zouxy09/article/details/8537620机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引
2015-10-09 15:03:11 387
转载 svm入门之九十svm用于多分类
出处:http://www.matlabsky.com/thread-10317-1-1.html 方形的点是负类。H,H1,H2是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是H’,H2’和H1,他们显然和之前的结果有出入,实际上负类给的样本点
2015-09-29 15:21:52 1494
转载 svm入门之八松弛变量
出处:http://www.matlabsky.com/thread-10317-1-1.html 就是图中**那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。这样类似的问题(仅有少数点线性不可分)叫做“近似线性可分”的问题。 以我们人类的常识来判断,说有一万个点都符合某种规律(因而线性可分
2015-09-29 15:18:51 862
转载 svm入门之七为何需要核函数
出处:http://www.matlabsky.com/thread-10317-1-1.html生存?还是毁灭?——哈姆雷特 可分?还是不可分?——支持向量机 之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使
2015-09-29 15:16:57 642
转载 svm入门之五、六线性分类器问题描述与求解
出处:http://www.matlabsky.com/thread-10317-1-1.html从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束
2015-09-29 15:14:58 450
转载 svm入门之四线性分类器求解与问题描述
出处:http://www.matlabsky.com/thread-10317-1-1.html上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义: 间隔:δ=y(wx+
2015-09-29 15:13:00 536
转载 svm入门之二、三线性分类器
出处:http://www.matlabsky.com/thread-10317-1-1.html线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念. 用一个二维空间里仅有两类样本的分类问题来举个小例子。如图所示C1和C2是要区分的两个类别,在二维平面中
2015-09-29 15:11:13 855
转载 svm入门之一八股介绍
出处:http://www.matlabsky.com/thread-10317-1-1.html支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC
2015-09-29 15:08:53 490
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人