AIGC与搜索深度融合,百度定义“生成式搜索”

百度宣布升级其“生成式搜索”能力,基于自研生成式模型为用户提供创作答案。这一升级将搜索引擎从“检索”推向“检索+生成”,增强信息整合、内容创作及个性化体验。百度的AIGC技术已在搜索中应用,如信息智能整合组织、内容创作和个性化内容体验的提升,旨在更有效地解决用户开放式搜索问题和定制化需求。

设想一下,当你搜索“公司活动通知怎么写”时,搜索引擎直接“写”了一篇送到眼前是什么体验?百度的“生成式搜索”正在让这样的场景成为现实。

日前,百度宣布,百度搜索将升级“生成式搜索”能力,基于百度自研的生成式模型能力,为用户开放式的搜索提问或定制化的信息需求“创作答案”。这是全网首个“生成式搜索”,引领了搜索新一轮技术变革。据悉,百度搜索从2021年就开始发力“生成式搜索”,并在各类特定场景实现应用,此次升级,将在更通用场景实现更深度应用,满足用户日益多元的搜索需求。

“生成式搜索”升级,百度引领搜索技术新变革

前段时间,一款名为chatGPT的对话式聊天模型,因为“能说会道”备受关注,这让AIGC再次出圈,但也有专家表示担忧,受到当前技术效果的影响,chatGPT提供的信息会存在准确度不够、时效性不足等问题。如果能与搜索引擎进行融合互补,或将开启全新的技术革命。

实际上,百度搜索早已展开布局。根据百度透露,此次AIGC与搜索的深度结合,将推动搜索引擎从“检索”到“检索+生成”的升级。

百度搜索杰出架构师辜斯缪指出,百度搜索已成为AI技术规模最大的应用场景,同时,百度持续在AIGC领域深度布局,并早已将AIGC能力应用在搜索上。据介绍,此次“生成式搜索”将实现更深度应用,进一步释放百度搜索更多差异化功能和优势,更好地解决用户的开放式搜索问题,满足定制化信息和创造性内容的获取需求。

此次升级“生成式搜索”,将实现信息智能整合组织、内容创作、个性化内容体验三个方面的体验提升。

具体来说,「信息智能整合组织」能综合各个检索结果中的信息分布,进行梳理、推理、校准、生成,在确保信息来源的权威性和准确性的同时,为用户提供整合、结构化的搜索答案。例如,当用户搜索“秦始皇和汉尼拔谁年纪大”时,百度搜索能基于二人出生年份信息直接给出“秦始皇年纪更大”的结论,还会提供二人具体出生年月和岁差等相关信息。又如,当用户想了解“北京GDP和上海GDP谁高”,百度可以直接基于权威数据自动生成近年两地GDP的走势图,直观呈现高低对比、高多少,而无需用户分别搜索两地GDP再自行计算。

「内容创作」将基于国内顶尖的中文生成式大模型——“文心·NLP大模型”,发挥超强语言理解能力以及对话生成、文学创作等能力,创新性地将大数据预训练与多源丰富知识相结合,在百度搜索内提供精准、权威的内容生成能力,可满足用户诸如“写文章”、“写公告”、“智能聊天对话”等内容创作相关的搜索需求。

「内容创作」示意效果图

「个性化内容体验」将基于不同用户画像和阅读偏好,提供差异化内容,提升个性化的内容体验。例如,一位高学历用户和小学生分别搜索“量子纠缠”,百度可以基于用户画像,给二者分别优先呈现更专业详尽的内容和更浅显易懂的内容。

多维布局提升技术“天花板”,AI让百度搜索长板更长

作为AI技术规模最大的应用场景,依托AI技术赋能,百度搜索实现全面升级,不仅更加智能,也更懂用户。“生成式搜索”升级背后,正是百度自研的国内顶尖中文生成式大模型文心大模型提供技术支撑。

过去十年,百度在人工智能领域的研发投入累计超千亿,马拉松式、压强式的投入,让百度AI不断攀登技术高峰。而百度移动生态是百度AI技术落地的“首站”,AIGC将实现大规模落地。正如百度集团资深副总裁、百度移动生态事业群组(MEG)总经理何俊杰所说,AIGC将颠覆现有内容生产模式,以十分之一的成本,以百倍千倍的生产速度,创造出有独特价值和独立视角的内容。过去一年,百度AIGC在内容创作、媒体传播等多个领域发挥了重要作用。未来,依托AIGC赋能,百度搜索将开创更广阔的的发展空间,实现搜索能力的高速进化。

作为搜索的引领者,通过前沿的AI新技术和海量的数据应用,未来百度将进一步实现用户需求和内容生态的高效连接,让智能搜索的场景无处不在。据悉,在1月10日的2022百度Create大会上,百度将发布在智能搜索领域的最新进展。

### 生成式AI (AIGC) 技术原理 生成式人工智能(AIGC),作为一种前沿的人工智能分支,主要依赖于复杂的算法来创建新内容而非简单分类现有数据。这类技术的核心在于模拟人类创造过程的能力,能够依据给定的数据集学习并生成全新的实例。生成对抗网络(GANs)[^4] 和变分自编码器(VAEs) 是实现这一目标的关键工具之一。 这些模型通常由两部分组成:一个是负责生成样本的生成器;另一个是对抗性的判别器用于评估生成的结果是否逼真。两者相互竞争,在这个过程中不断提升彼此的表现直至达到理想状态。这种机制使得机器不仅能理解输入信息的本质特征还能创造出具有相似特性的全新对象或情景描述[^1]。 ### 应用场景 #### 自然语言处理(NLP) 在NLP领域内,AIGC被广泛应用于自动写作、聊天机器人开发等方面。例如,通过分析大量语料库中的模式,系统可以撰写新闻报道、故事甚至诗歌等文学作品。此外,借助深度神经网络的支持,虚拟助手现在也变得更加智能化,能更自然流畅地用户互动交流[^3]。 #### 计算机视觉(CV) 对于CV而言,AIGC同样展现出巨大潜力。无论是从零开始创作艺术画作还是修复损坏的老照片,或是根据文字提示合成特定风格的艺术品,都离不开这项强大的技术支持。不仅如此,该技术还在视频编辑方面发挥了重要作用——比如实时替换背景、增强特效效果等等。 #### 商业应用及其他行业 除了上述两个热门方向外,其他多个行业中也能见到AIGC的身影。金融机构利用其进行风险预测建模;医疗保健部门则探索个性化治疗方案设计的可能性;娱乐产业更是积极尝试打造沉浸式的用户体验环境。随着研究不断深入和技术进步加快,预计未来会有更多创新应用场景涌现出来[^2]。 ### 发展趋势 展望未来,AIGC将继续沿着几个重要维度演进: - **跨学科融合**:其他科学领域的交叉合作将进一步拓宽AIGC的应用边界; - **伦理考量加强**:面对日益增长的社会关注,确保公平性和透明度将成为开发者们优先考虑的因素之一; - **硬件加速支持**:专用芯片的研发有助于提升计算效率降低能耗成本,从而推动更大规模部署成为可能; - **多模态交互体验优化**:整合语音识别、手势控制等多种感知方式于一体,使人机沟通更加直观便捷[^5]。 ```python # Python代码示例展示了一个简单的GAN架构定义 import torch.nn as nn class Generator(nn.Module): def __init__(self, input_size=100, output_channels=3): super(Generator, self).__init__() # 定义生成器的具体结构... class Discriminator(nn.Module): def __init__(self, input_channels=3): super(Discriminator, self).__init__() # 定义判别器的具体结构... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值