基于小程序和SSM实现智能推荐的电影推荐

文章介绍了一款利用小程序和SSM框架开发的电影推荐系统,该系统采用用户兴趣的协同过滤算法进行个性化推荐,满足用户查询电影信息、评价电影及获取定制化推荐的需求。后台管理系统支持电影和用户信息管理以及推荐算法优化。
摘要由CSDN通过智能技术生成

随着人们生活水平的提高,观影已经成为了人们日常娱乐生活的重要组成部分。然而,由于电影的种类繁多,每个人的喜好也不同,如何快速准确的找到符合自己口味的电影成了一个难题。为了解决这个问题,本文基于小程序和SSM框架实现了一款智能推荐的电影推荐系统,旨在为用户提供更为个性化的电影推荐服务。

一、需求分析

在设计电影推荐系统之前,我们需要先了解用户的需求。通过对目标用户的调研和分析,我们可以得到以下需求:

1. 个性化推荐:用户希望能够根据自己的喜好和历史观影记录,得到更为个性化的电影推荐。

2. 电影信息查询:用户希望能够通过系统查询到电影的详细信息,包括演员、导演、剧情简介、评分等。

3. 用户评价功能:用户希望能够对已观影的电影进行评价,并与其他用户分享自己的观影感受。

4. 推荐算法优化:用户希望推荐算法能够不断优化,提高推荐的准确性和实用性。

二、系统设计

基于以上需求,我们设计了一个包括前台小程序和后台管理系统的电影推荐系统。

1. 小程序端

小程序端是用户使用电影推荐系统的主要界面。用户可以通过小程序端进行电影搜索、推荐等操作。小程序端主要包括以下页面:

(1)首页:用户可以在首页查看系统推荐的电影,也可以通过搜索框搜索电影。

(2)电影详情页:用户可以在电影详情页查看电影的详细信息,包括演员、导演、剧情简介、评分等。

(3)推荐页:用户可以在推荐页查看系统为其推荐的电影列表。

(4)个人中心:用户可以在个人中心查看自己的观影记录、评价记录等信息。

2. 后台管理系统

后台管理系统是电影推荐系统的核心,通过后台管理系统,管理员可以对电影信息、用户信息、推荐算法等进行管理和维护。后台管理系统主要包括以下模块:

(1)电影管理模块:管理员可以在电影管理模块中添加、修改、删除电影信息。

(2)用户管理模块:管理员可以在用户管理模块中查看用户信息、修改用户信息、删除用户信息。

(3)推荐算法模块:管理员可以在推荐算法模块中对推荐算法进行优化和调整。

(4)数据统计模块:管理员可以在数据统计模块中查看系统的使用情况、用户行为等数据。

三、技术实现

为了实现电影推荐系统,我们采用了小程序和SSM框架进行开发。

1. 小程序端

小程序端主要使用了微信小程序开发框架,通过该框架实现了小程序的开发和发布。同时,我们还使用了微信小程序云开发平台,实现了用户登录、数据存储等功能。

c1badbff56384ff79dfd562b696d96dd.png

2. 后台管理系统

后台管理系统使用了SSM框架进行开发,其中S指Spring框架,M指MyBatis框架,S指SpringMVC框架。通过该框架,我们实现了后台管理系统的开发和部署。

class DatabaseController {
    //private static final Logger logger = Logger.getLogger(DatabaseController.class);
    @Autowired
	private DatabaseService databaseService;
    
    @RequestMapping(value = "/list", produces = "application/json; charset=utf-8", method = { RequestMethod.GET,
			RequestMethod.POST })
    @ResponseBody
    public List<Map<String,Object>> list(HttpServletRequest req) {
    	Dbservice dbm = new Dbservice(databaseService);
    	String table = Dbservice.getTableName(req.getParameter("table"));
    	Object objectObj = Common.getByRequest(Dbtablemapping.getModelByTable(table), req, false);
    	//Robj robj = new Robj();
    	List<Map<String,Object>> list = null;
    	try {
			String sql = dbm.list(table,objectObj,null);
			list = databaseService.find(sql);
		} catch (Exception e) {
			
			e.printStackTrace();
		}  	
        return list;
    }
    

四、推荐算法

推荐算法是电影推荐系统的核心,我们采用了基于用户兴趣的协同过滤算法进行推荐。该算法主要分为以下步骤:

1. 数据预处理:将用户历史观影记录和电影信息进行处理,得到用户-电影评分矩阵。

2. 相似度计算:通过计算用户之间的相似度,得到与目标用户兴趣相似的用户列表。

3. 推荐电影:根据与目标用户兴趣相似的用户列表和用户-电影评分矩阵,推荐目标用户可能感兴趣的电影。

五、总结

本文介绍了基于小程序和SSM框架实现的智能推荐的电影推荐系统。该系统实现了用户个性化推荐、电影信息查询、用户评价功能等需求,并采用了基于用户兴趣的协同过滤算法进行电影推荐。该系统不仅可以提高用户观影体验,还可以帮助电影产业进行市场推广和营销。

基于智能推荐的电影推荐小程序录像

下载地址:https://download.csdn.net/download/weishuai90/87667355

基于SSM(Spring+SpringMVC+MyBatis)和Vue.js的协同过滤算法电影推荐系统是一个利用用户历史观影记录和评分数据,通过协同过滤算法来预测用户可能喜欢的电影的系统。该系统主要由以下几个模块组成: 用户管理模块:用于管理用户的信息,包括用户的基本信息、历史观影记录和评分等。 电影管理模块:用于管理电影的信息,包括电影的基本信息、剧情简介、演员表和评分等。 电影推荐模块:用于根据用户的历史观影记录和评分数据,通过协同过滤算法来预测用户可能喜欢的电影电影搜索模块:用于提供电影搜索功能,用户可以通过输入电影名称或关键词来查找感兴趣的电影。 个人中心模块:用于展示用户的个人信息和历史观影记录,同时也可以查看自己的推荐电影列表。 整个系统的实现过程大致如下: 用户登录后,进入用户管理模块,获取用户的基本信息和历史观影记录。 用户在电影管理模块中添加自己感兴趣的电影,并填写电影的相关信息。 用户在电影推荐模块中输入自己的兴趣标签或浏览历史记录,系统会根据这些信息进行协同过滤算法分析,预测用户可能喜欢的电影。 用户在电影搜索模块中输入电影名称或关键词,系统会根据用户的搜索历史和协同过滤算法结果,返回相关的电影信息。 用户在个人中心模块中可以查看自己的推荐电影列表和历史观影记录,同时也可以修改自己的个人信息。 总之,基于SSM+Vue的协同过滤算法电影推荐系统是一个功能强大、易于使用的系统,可以帮助用户快速找到自己喜欢的电影,提高观影体验。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来在这儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值