逻辑回归

线性回归

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。表现形式:
  f ( x ) = w T x + b  f(x) = w^Tx + b  f(x)=wTx+b
一般给定一个 x x x,可以预测一个数值 y y y
为了消除常数项 b b b,我们设 x , = [ 1 , x ] T x^, = [1,x]^T x,=[1,x]T ,同时 w , = [ b , w ] T w^, = [b,w]^T w,=[b,w]T, 方程简化为
f ( x , ) = w , T x , f(x^,) = w^{, T} x^, f(x,)=w,Tx,

逻辑回归

上述线性回归的方法的值域为 ( − ∞ , + ∞ ) (-{\infty},+{\infty}) (,+) ,而我们想要的只是 ( 0 , 1 ) (0,1) (0,1),所以sigmod函数 1 1 + e − x \frac{1}{1+e^{-x}} 1+ex1,其图形如下:
在这里插入图片描述

逻辑回归损失函数

定义
P y = 1 = 1 1 + e − w T x = p P_{y=1} =\frac{1}{1+e^{-w^Tx}} = p Py=1=1+ewTx1=p
P y = 0 = 1 − p P_{y=0} =1-p Py=0=1p
p ( y i ∣ x i ) = p y i ( 1 − p ) 1 − y i p(y_i|x_i)= p^{y_i}(1-p)^{1-y^i} p(yixi)=pyi(1p)1yi
所以:样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . ( x n , y n ) (x_1,y_1),(x_2,y_2)...(x_n,y_n) (x1,y1),(x2,y2)...(xn,yn)的对数似然函数
F = l n ( ∏ i = 1 n p y i ( 1 − p ) 1 − y i ) = ∑ i = 1 n y i l n ( p ) + ( 1 − y i ) l n ( 1 − p ) F= ln(\prod_{i=1}^n p^{y_i}(1-p)^{1-y_i}) = \sum_{i=1}^n y_i ln(p) + (1-y_i)ln(1-p) F=ln(i=1npyi(1p)1yi)=i=1nyiln(p)+(1yi)ln(1p)
其中 p = 1 1 + e − w T x p=\frac{1}{1+e^{-w^Tx}} p=1+ewTx1
next: 求 ▽ w F \triangledown_{w}F wF
首先记住以下几个矩阵求导公式,具体见矩阵求导
∂ ( A X ) ∂ X = A T \frac{\partial (AX)} {\partial X} = A^T X(AX)=AT
∂ ( X T A ) ∂ X = A \frac {\partial (X^T A)} {\partial X} = A X(XTA)=A

所以
∂ w T x ∂ w = x \frac{\partial w^Tx} {\partial w} = x wwTx=x
下面对p求导( p ′ = ∂ p ∂ w p^{'}=\frac {\partial p}{\partial w} p=wp)
p ′ = ( 1 1 + e − w T x ) ′ = ( 1 + e − w T x ) ′ ( 1 + e − w T x ) 2 = ( e − w T x ) ( − w T x ) ′ ( 1 + e − w T x ) 2 = ( e − w T x ) ( − x ) ( 1 + e − w T x ) 2 = p ( 1 − p ) x p^{'} = (\frac{1}{1+e^{-w^Tx}})^{'} \\ = \frac {(1+e^{-w^Tx})^{'}}{{(1+e^{-w^Tx}})^2} \\ = \frac {(e^{-w^Tx}) (-w^Tx)^{'}}{{(1+e^{-w^Tx}})^2} \\ = \frac {(e^{-w^Tx}) (-x)}{{(1+e^{-w^Tx}})^2} \\ = p(1-p)x p=(1+ewTx1)=(1+ewTx)2(1+ewTx)=(1+ewTx)2(ewTx)(wTx)=(1+ewTx)2(ewTx)(x)=p(1p)x
最后求得: ▽ w F = ∑ i = 1 n ( y i l n ( p ) + ( 1 − y i ) l n ( 1 − p ) ) ′ = ∑ i = 1 n y i l n ′ ( p ) + ( 1 − y i ) l n ′ ( 1 − p ) = ∑ i = 1 n y i p ′ p + ( 1 − y i ) − p ′ 1 − p = ∑ i = 1 n y i p ( 1 − p ) x p + ( 1 − y i ) − p ( 1 − p ) x 1 − p = ∑ i n ( y i − p ) x i \triangledown_{w}F = \sum_{i=1}^n (y_i ln(p) + (1-y_i)ln(1-p))^{'} \\ =\sum_{i=1}^n y_i ln^{'}(p) + (1-y_i)ln^{'}(1-p) \\ = \sum_{i=1}^ny_i \frac{p^{'}}{p} + (1-y_i)\frac{-p^{'}}{1-p} \\ =\sum_{i=1}^ny_i \frac{ p(1-p)x}{p} + (1-y_i)\frac{- p(1-p)x}{1-p} \\ = \sum_i^n (y_i -p)x_i wF=i=1n(yiln(p)+(1yi)ln(1p))=i=1nyiln(p)+(1yi)ln(1p)=i=1nyipp+(1yi)1pp=i=1nyipp(1p)x+(1yi)1pp(1p)x=in(yip)xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值