ai阵列图形
重点 (Top highlight)
It’s a golden era of video game remakes. Earlier this year, Final Fantasy VII was updated for 2020 with a complete overhaul of its graphics and core gameplay systems, and fans of 900-degree skateboard turns will soon ollie into complete remasters of the first two Tony Hawk Pro Skater games.
这是电子游戏翻拍的黄金时代。 今年早些时候,《 最终幻想VII》在2020年进行了更新,对其图形和核心游戏系统进行了全面改革,并且900度滑板转弯的粉丝很快就会获得前两款Tony Hawk Pro Skater游戏的完整改版。
These overhauls typically take years for professional game studios, which rebuild the game from the ground up. But fans have also been hard at work remaking classic games themselves, using artificial intelligence algorithms to upscale the pixelated, blotchy renderings of older games with crisp, modern graphics.
对于专业游戏工作室来说,这些大修通常需要花费数年的时间,这些工作室需要从头开始重新构建游戏。 但是,粉丝们也一直在努力自己制作经典游戏,使用人工智能算法来放大具有清晰现代图形的旧游戏的像素化,斑点状渲染。
This community of thousands of game upscalers has sprung up thanks to the ability to instantly access and use A.I. research, which is often posted for free online by researchers from academia to big tech companies. Hobbyist game upscalers typically use an algorithm called ESRGAN, which won top prize at an international image upscaling competition in 2018.
这个 由于具有即时访问和使用AI研究的能力,因此成千上万的游戏升级用户社区如雨后春笋般涌现,学术研究人员到大型科技公司的研究人员通常都会在网上免费发布这些研究。 业余爱好者游戏提升者通常使用一种称为ESRGAN的算法,该算法在2018年的国际形象提升比赛中获得了最高奖。
The development of GANs was a “eureka” moment, like the fabled image of Archimedes running from his bath after realizing how water displacement works.
GAN的发展是一个“尤里卡”的时刻,就像阿奇米德斯在寓言中意识到水驱散的原理后从他的浴池奔跑的形象一样。
Using A.I. to remaster old games involves breaking down the components of a video game into two categories, “structures” and “textures.” Structures refers to 3D objects in the game, and textures refers to the graphics stretched over those objects to give them color, detail, and the illusion of depth.
使用AI重新制作旧游戏需要将视频游戏的组件分为两类,即“结构”和“纹理”。 结构是指游戏中的3D对象,纹理是指在这些对象上拉伸以赋予它们颜色,细节和深度幻觉的图形。
By replacing the textures in games, modders can completely change how a game looks or feels. And in the case of game upscaling, they can also update those textures with newer, higher-resolution versions.
通过替换游戏中的纹理,修改器可以完全改变游戏的外观或感觉。 并且在游戏升级的情况下,他们还可以使用更新的高分辨率版本更新这些纹理。
To understand how the algorithms recreating these textures actually function, you have to go back to 2014 to when the foundational concept of a GAN (or Generative Adversarial Network) was introduced.
要了解重新创建这些纹理的算法的实际功能,您必须追溯到2014年,当时才引入GAN(或生成对抗网络)的基本概念。
The development of GANs was a “eureka” moment, like the fabled image of Archimedes running from his bath after realizing how water displacement works. In 2014, Ian Goodfellow was at a bar drinking with some fellow A.I. researchers, as a send-off to a colleague who had just finished their PhD, he told Wired in 2017. A researcher was describing a method for generating images using deep learning algorithms, but Goodfellow disagreed on the methodology. He thought that images were too complex for one algorithm to learn to generate realistically on its own. But he had an idea: What if an algorithm could teach another algorithm how to generate images? Two algorithms, one to try and generate an image and the other to determine whether the result is realistic, might automate the usual trial and error researchers employ to tune algorithms.
GAN的发展是一个“尤里卡”的时刻,就像阿奇米德斯在寓言中意识到水驱散的原理后从他的浴池奔跑的形象一样。 2014年,伊恩·古德费洛(Ian Goodfellow)和一些AI研究人员一起在酒吧喝酒,作为对刚完成博士学位的同事的礼物, 他在2017 年告诉《 连线 》。研究人员正在描述一种使用深度学习算法生成图像的方法,但Goodfellow不赞成这种方法。 他认为图像过于复杂,以至于一种算法都无法学会自行生成逼真的图像。 但是他有一个主意: 如果一个算法可以教另一个算法如何生成图像怎么办? 两种算法(一种尝试生成图像,另一种用于确定结果是否真实)可以使研究人员用来调整算法的常见试验和错误自动进行。
“I went home still a little bit drunk. And my girlfriend had already gone to sleep. And I was sitting there thinking: ‘My friends at the bar are wrong!’” he told Wired. “I stayed up and coded GANs on my laptop.”
“我回家还是有点醉。 我的女朋友已经睡了。 我坐在那儿想:“我在酒吧的朋友错了!”他告诉《 连线》 。 “我熬夜在笔记本电脑上编码GAN。”
It worked on the first try.
它在第一次尝试时就起作用了。
Playing two algorithms off each other was foundational to an entirely new subsection of artificial intelligence. GANs suddenly became the hot new trend in A.I. research. In 2016, Goodfellow presented a tutorial on how the process worked at the industry’s largest conference, nodding to the history of algorithms playing games against themselves to improve, which dated back to A.I. pioneer Arthur Samuel’s checkers program in the 1950s.
相互抵消两个算法是人工智能一个全新部分的基础。 GAN突然成为AI研究的新趋势。 在2016年,Goodfellow在行业最大的会议上介绍了该过程的工作原理 ,以点点滴滴地介绍算法对自己进行改进的历史 , 该历史可以追溯到1950年代AI先驱Arthur Samuel的跳棋程序。
ArXiv, the online repository of research papers favored by A.I. scientists, became flooded with papers about GANs. Goodfellow’s original GAN paper has been cited by nearly 20,000 other pieces of research since 2014.
由AI科学家青睐的在线研究论文库ArXiv充斥着有关GAN的论文。 自2014年以来,Goodfellow的原始GAN论文已被近20,000项其他研究引用。
One of those papers was from a group of researchers at Twitter, who proposed an adaptation of Goodfellow’s work not to generate new images, but to enhance existing ones. This is an area of research called super-resolution.
其中的一篇论文来自Twitter的一组研究人员,他们提出对Goodfellow的工作进行改编,而不是生成新图像,而是增强现有图像。 这是一个研究领域,称为超分辨率。
The Twitter researchers trained the GAN’s image-generating algorithm on two versions of images, one group that was blurred to a low quality and one group that was a higher quality. The idea is that the algorithm would learn the difference between low-quality images and high-quality images and be able to reconstruct detail in new images as well. This approach was dubbed Super-Resolution Generative Adversarial Network, or SRGAN.
Twitter研究人员在两种图像版本上训练了GAN的图像生成算法,一组模糊到低质量,另一组质量更高。 想法是,该算法将学习低质量图像和高质量图像之间的差异,并能够在新图像中重建细节。 这种方法被称为超分辨率生成对抗网络,即SRGAN。
But the iteration that would bring the technology into the hands of game upscaling hobbyists would ultimately be called an Enhanced Super-Resolution Generative Adversarial Network, or ESRGAN. The paper came from a group of researchers in academic labs sponsored by SenseTime, one of China’s A.I. giants.
但是,将这项技术带入游戏升级爱好者的迭代最终将被称为增强型超分辨率生成对抗网络( ESRGAN) 。 该论文来自由中国人工智能巨头之一的SenseTime赞助的学术实验室中的一组研究人员。
SRGAN, like GANs in general, is made of two algorithms: One that generates an image, and one that determines whether the image is real or fake. ESRGAN compares the generated image to a real image, and tries to determine which is more real. Researchers say that this more nuanced approach forces the algorithm to eventually generate details with sharper edges and more realistic textures.
与GAN一样,SRGAN由两种算法组成:一种算法生成图像,另一种算法确定图像是真实的还是伪造的。 ESRGAN将生成的图像与真实图像进行比较,并尝试确定哪个更真实。 研究人员说,这种更加细致入微的方法迫使算法最终生成具有更锐利边缘和更逼真的纹理的细节。
Just two weeks after ESRGAN was introduced, a video game modder who goes by the name kingdomakrillic posted a tutorial on Tumblr about how to use the A.I. research paper for upscaling video games.
在推出ESRGAN仅仅两周之后,一个名为Kingdomakrillic的视频游戏开发者在Tumblr上发布了有关如何使用AI研究论文升级视频游戏的教程。
One video game upscaler, Aminuddin Abdollah, told OneZero that kingdomakrillic’s results using ESRGAN spurred his fascination with machine learning.
一位视频游戏上乘者Aminuddin Abdollah告诉OneZero ,Kingdomakrillic使用ESRGAN的结果激发了他对机器学习的迷恋。
This technique that game upscalers use is wholly different than the approach game studios use.
游戏升级者使用的这项技术与游戏工作室使用的方式完全不同。
“After ESRGAN came about, kingdomakrillic’s posts revealed a very important thing overlooked perhaps by the ESRGAN authors themselves: the dataset plays a very major role in the results,” Abdollah told OneZero over Discord chat.
“在ESRGAN出现之后,kingdomakrillic的帖子显示了一个非常重要的事情,也许被ESRGAN的作者自己忽略了:数据集在结果中起着非常重要的作用,” Abdollah在Discord聊天中对OneZero说道。
When using ESRGAN for upscaling games, kingdomakrillic had trained the algorithm not on the photographs that the academics had used, but on a dataset of comics called Manga109. The images of Manga109 were more closely related to video game graphics than real pictures, which allowed the algorithm to more accurately understand what kind of distinct lines and shapes video games used.
当使用ESRGAN进行游戏升级时,kingdomakrillic并不是在学者使用的照片上而是在名为Manga109的漫画数据集上训练了该算法。 与真实图片相比,Manga109的图像与视频游戏图形之间的关系更为紧密,这使算法可以更准确地了解视频游戏所使用的独特线条和形状。
How ESRGAN actually functions is by looking for color variation between an image’s pixels, and then inserting the detail that it thinks should exist based on the images it’s seen before. When trained on photographs, ESRGAN inserts tons of details into the large pixels typically seen in older video game art. Here’s an example given by Abdollah, from a game he upsampled this year: On the left is the original, and on the right is the ESRGAN upscale when trained on photographs.
ESRGAN的实际功能是通过查找图像像素之间的颜色变化,然后基于之前看到的图像插入它认为应该存在的细节。 在对照片进行培训后,ESRGAN会将大量细节插入到较旧的视频游戏美术作品中常见的大像素中。 这是阿卜杜拉(Abdollah)举的一个例子,他从今年对他的游戏进行了升级:左边是原始图片,右边是经过照片训练的ESRGAN高档图片。
The algorithm actually adds too much detail into the image, oversharpening it and making it look unrealistic. But training it on drawings removes the algorithm’s knowledge of all that extra detail found in photographs. In effect, it blunts the algorithm’s tendency to oversharpen and actually softens the pixels. Calling the process game downscaling would almost be more accurate.
该算法实际上在图像中添加了过多的细节,使图像过于锐化并使它看起来不真实。 但是在图纸上对其进行训练会消除算法对照片中所有额外细节的了解。 实际上,它抑制了算法过度锐化的趋势,并实际上软化了像素。 称流程游戏缩小规模几乎是更准确的。
Here is what the same image looks like when generated by ESRGAN is trained on a better dataset more suited to video games:
这是由ESRGAN生成的相同图像在更适合视频游戏的更好数据集上进行训练后的样子:
You can see that the transition between colors is more gradual, and the image doesn’t lose its pixel-art quality. It just looks like higher-resolution pixel art.
您会看到颜色之间的过渡更加平缓,并且图像不会失去其像素艺术品质。 它看起来就像是高分辨率的像素艺术。
And game upscalers are sharing their newly trained versions of the algorithms as well. Those who have altered algorithms specifically for certain art styles, like pixel art, have posted them publicly for others to use.
游戏升级者也将分享他们最新训练的算法版本。 那些专门针对某些艺术风格(例如像素艺术)更改了算法的人,已将其公开发布给其他人使用。
This technique that game upscalers use is wholly different than the approach game studios use. While upsamplers use the same base game, where the detail of the 3D structures are still limited by the processing power of the game systems of the time, and just replace textures. Game studios remastering a game have the luxury of actually rewriting how a game functions, sometimes in a new engine, or the program that mixes 3D models, textures, and the physics of the game.
游戏升级者使用的这项技术与游戏工作室使用的方式完全不同。 虽然上采样器使用相同的基本游戏,但3D结构的细节仍受当时游戏系统的处理能力限制,仅替换纹理即可。 重新制作游戏的游戏工作室可以实际重写游戏的功能,有时是在新引擎中,也可以是混合3D模型,纹理和游戏物理性的程序。
Vicarious Visions, the company remastering the new Tony Hawk games, told Polygon that it was using a newer engine to build the remasters while still retaining some old code from the original games.
该公司对Tony Hawk新游戏进行了重新制作的公司Vicarious Visions 告诉Polygon ,它使用更新的引擎来制作重新制作作品,同时仍保留了原始游戏中的一些旧代码。
“We dug into Neversoft’s codebase and were able to pull the handling code out of there, bring it into the engine that we’re in now and update it to make sure that we are making that feel exactly the way you remember it but updated with modern animation,” Jen Oneal, Vicarious Visions studio head, told Polygon.
“我们研究了Neversoft的代码库,并能够将处理代码从那里拉出来,将其带入我们现在使用的引擎中,并对其进行更新,以确保我们以与您记得的方式完全相同的方式进行更新“现代动画”,Vicarious Visions工作室负责人Jen Oneal告诉Polygon 。
But the point of DIY game upscaling isn’t truly to build a game again from the ground up. Rather, it’s to align the way a game looks to how we might have remembered it looked when we first played it in 1985 or 1995. The resolution of the Nintendo 64 was 640×480, more than six times less resolution than a standard 1080p game today. But viewed on an old CRT television, they still looked incredible to our eyes.
但是,DIY游戏升级的重点并不是真正从头开始重新构建游戏。 相反,它是要使游戏的外观与我们在1985年或1995年首次玩游戏时的记忆方式保持一致。Nintendo64的分辨率为640×480,比标准1080p游戏的分辨率低六倍以上。今天。 但是在旧的CRT电视上观看时,它们在我们眼中仍然看起来不可思议。
Upscaling is also far from the first community of people modifying video games. Cult classics like Doom have hundreds of iterations, where modders replace files in the original game to create alternate enemies or settings.
升级也不是第一个修改视频游戏的人。 像Doom这样的邪教经典具有数百次迭代 ,其中修改器会替换原始游戏中的文件以创建替代敌人或设置。
But now some games are looking incredible again, thanks to the modding community, which is still looking for the next technology to bring older video games into the 21st century.
但是现在,由于改装社区的出现,一些游戏再次看起来令人难以置信,该社区仍在寻找将旧式视频游戏带入21世纪的下一代技术。
“We’re already seeing the limitations of ESRGAN at recognizing certain things,” Abdollah said. “Waiting for the next big thing to arrive. But hopefully one that hobbyists will be able to use.”
阿卜杜拉说:“我们已经认识到ESRGAN在识别某些事情上的局限性。” “等待下一件大事到来。 但是希望那些业余爱好者能够使用它。”
ai阵列图形