欧拉公式ejwt_欧拉公式

本文深入探讨了欧拉公式ejwt,揭示了其数学之美。欧拉公式是复数领域的一个基本关系,将三角函数与指数函数联系起来,具有广泛的应用于物理学、工程学和计算机科学中。
摘要由CSDN通过智能技术生成

欧拉公式ejwt

In this post we will explore Euler’s Formula, explain what it is, where it comes from, and reveal its magic properties.

在这篇文章中,我们将探索欧拉公式,解释其含义,来源以及揭示其神奇的特性。

什么是欧拉公式? (What is Euler’s Formula?)

Euler’s Formula, coined by Leonhard Euler in the XVIIIth century, is one of the most famous and beautiful formulas in the mathematical world.

列昂哈德·欧拉 ( Leonhard Euler)在十八世纪创造的欧拉 公式是数学界最著名,最美丽的公式之一。

It is so, because it relates various apparently very distinct elements like the irrational number e, imaginary numbers, and trigonometrical functions.

之所以如此,是因为它涉及到各种明显非常不同的元素,例如无理数e ,虚数和三角函数。

Lets see what it looks like:

让我们看一下它的样子:

Image for post
Euler’s Formula
欧拉公式

As we can see, we have our precious number e on the left, the cosine and sine trigonometrical functions on the right, and our imaginary correspondent i on both sides.

正如我们所看到的,左边有我们的珍贵数字e ,右边有余弦正弦三角函数,而在两侧都有我们的虚构对应物i

Before we dive into what this formula is telling us, both from a calculus and a geometric perspective, lets first see where this crazy relationship comes from.

在深入研究此公式要告诉我们的内容之前,首先要从微积分和几何角度出发,先了解一下这种疯狂的关系的来源。

欧拉公式的历史 (The History of Euler’s Formula)

In the year 1714 British physicist and mathematician Roger Cotes established in one formula the relationship between logarithms, trigonometrical functions and imaginary numbers.

1714年,英国物理学家和数学家罗杰·科特斯(Roger Cotes)用一个公式建立了对数,三角函数和虚数之间的关系。

Twenty years later, Leonhard Euler reached the same formula but using exponential functions instead of logarithms. Cote’s formula is the following:

二十年后, 莱昂哈德·欧拉 ( Leonhard Euler)得出了相同的公式,只是使用了指数函数而不是对数。 科特的公式如下:

Image for post
Roger Cotes Formula
罗杰·科特斯公式

To go from Cotes formula to Euler’s we just have to apply exponentials to both sides. To go from Euler’s Formula to Cotes we reverse this process, using logarithms.

要从Cotes公式转换为Euler公式,我们只需要对双方应用指数。 为了从欧拉公式到科特兹,我们使用对数逆转了这一过程。

Curiously enough, that none of the authors of the respective formulas saw the geometrical connotation, which is one of the most fascinating insights that can be derived from them. The following figure shows the complex plane, the place where we will see these geometrical connotations.

令人感到奇怪的是, 各个公式的作者都没有看到几何含义 ,这是可以从中得出的最引人入胜的见解之一。 下图显示了复杂平面,我们将在其中看到这些几何含义。

Image for post
The complex plane, with a unit 1 circumference
圆周为1的复平面

Before that, you should know that if we particularise Euler’s formula to the value of θ= π we get the famous Euler’s Identity. Lets quickly see it.

在此之前,您应该知道,如果将欧拉公式特定化为θ 的值,我们将获得著名的欧拉恒等式 。 让我们快速看到它。

欧拉的身份 (Euler’s Identity)

As mentioned before, if we set the value of θ the probably most famous number of all times, π, Euler’s Formula becomes Euler’s Identity.

如前所述,如果我们将θ的值设置为有史以来最著名的数字π,则欧拉公式成为 欧拉的恒等式

Image for post
Euler’s Identity
欧拉的身份

If you want to see why Euler’s Identity is so intriguing, check out the following post where I explain all about it.

如果您想了解为什么Euler的身份如此吸引人,请查看以下文章,我将在其中进行所有解释。

Awesome, now that we know what Euler’s Formula and Euler’s Identity are, lets break the former into its individual elements and explore why it is such an amazing equation.

太棒了,现在我们知道什么是欧拉公式和欧拉身份, 让我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值