工作10年厌倦写代码_厌倦了什么可以教你过度拟合

工作10年厌倦写代码

富纳纪念 (Funes the memorious)

Borges wrote Funes the memorious (originally “Funes el memorioso”) in 1954. This tale was born after the author suffered from insomnia. This tale tells the story of Ireneo Funes who suffers from hypermnesia. After a horseback riding accident, Funes discovers that he can remember absolutely everything: the shape of the clouds in every moment of the day, the position of the light in every corner of the house, what he did minute by minute two months ago, etc.

博尔赫斯(Borges)于1954年写了纪念Funes(原为“ Funes el memorioso”)。这个故事是在作者失眠之后诞生的。 这个故事讲述了患有高记忆症的Ireneo Funes的故事。 在一次骑马事故后,富内斯发现他几乎可以记住所有事情:一天中每时每刻的云朵形状,房屋各个角落的光线位置,两个月前他每分钟的行为等等。 。

Image for post
Jorge Luis Borges image under public domain.
Jorge Luis Borges在公共领域的形象。

In this tale, Borges explores various topics regarding several aspects of our life that require the “art of forgetting”. By remembering absolutely everything Funes loses one of the most important features of the thinking process: generalization. Funes cannot understand how the term “dog” can group every dog if they are clearly different. He can easily differentiate the small black dog with shiny eyes from the small black dog with that red dot in the left eye, but he cannot understand what makes a dog to be a dog.

在这个故事中,博尔赫斯(Borges)探索了涉及我们生活各个方面的各种主题,这些主题需要“忘记的艺术”。 通过绝对地记住一切,富内斯失去了思维过程中最重要的特征之一: 泛化 。 如果它们明显不同,Funes无法理解“狗”一词如何将每只狗分组。 他可以轻松地将眼睛闪闪发光的小黑狗与左眼带有红点的小黑狗区分开,但是他不明白是什么使狗成为狗。

过度拟合或泛化丢失 (Overfitting or the lost of generalization)

Funes hypermnesia is more a misfortune than a gift. With no generalization is impossible to use abstract thinking. And without abstract thinking, Funes is closer to a machine rather than a human being. He goes into the opposite direction of what we expect to obtain with machine learning.

Funes失忆症不是礼物而是不幸。 没有概括,就不可能使用抽象思维。 而且,如果没有抽象思维,Funes更接近于机器,而不是人类。 他朝着我们期望通过机器学习获得相反的方向发展。

Overfitting is to machine learning what hypermnesia is to Funes. Overfitted models cannot distinguish between noisy observations and the underlying model. This is, they cannot generalize.

过度拟合是指机器学习过高记忆对于Funes是什么。 过度拟合的模型无法区分嘈杂的观察结果和基础模型。 这是,他们不能一概而论。

The figure below shows two binary classifiers (black and green lines). The overfitted classifier (green line) is very dependant on the training data and it is very likely to have a poor performance when new observations arrive.

下图显示了两个二进制分类器(黑线和绿线)。 过度拟合的分类器(绿线)非常依赖于训练数据,并且当新的观测值到达时,其性能很可能很差。

Image for post
Ignacio Icke under Creative Commons on Ignacio IckeWikipedia 维基百科上的知识共享下

How do I know I have an overfitted model? When you observe a much better performance in your training set than in your testing set.

我怎么知道我有一个过拟合的模型? 当您在训练集中观察到比测试集中更好的表现时。

Then, how can I prevent overfitting?

那么,如何防止过度拟合?

  • Consider large enough datasets. If your dataset is too small your model will simply learn by heart ignoring any general rules.

    考虑足够大的数据集。 如果您的数据集太小,您的模型将完全无视任何一般规则,而全心全意地学习。
  • Cross validation always in mind.

    始终牢记交叉验证

  • Regularization always helps.

    正则化总是有帮助的。

  • Ensembles of models can help with generalization.

    模型集合可以帮助进行概括。

  • Early stopping. Iterative algorithms (CNN, DNN, RNN, etc.) suffer from the local minima problem. Stopping on time can give you better results.

    早停。 迭代算法(CNN,DNN,RNN等)遭受局部极小问题的困扰 。 按时停止可以为您带来更好的结果。

Hopefully, you will consider reading Funes the memorious or any Borges tale. And hopefully, you will think about Funes when you find your next overfitted model.

希望您会考虑阅读Funes的纪念性故事或任何Borges故事。 希望您会在找到下一个过度拟合的模型时考虑Funes。

Originally published at: https://jmtirado.net/what-can-borges-teach-you-about-overfitting/

最初发布于: https : //jmtirado.net/what-c​​an-borges-teach-you-about-overfitting/

翻译自: https://towardsdatascience.com/what-can-borges-teach-you-about-overfitting-e5ac2dd21217

工作10年厌倦写代码

### 编程人员对编代码缺乏兴趣的心态和原因 编程是一项复杂的工作,涉及逻辑推理、解决问题以及持续学习新技术。然而,并不是所有的程序员都始终保持对编的热情。当一名程序员表现出不爱代码的态度时,这可能是由多种因素造成的。 #### 工作环境和个人状态的影响 由于工作压力大、项目周期短或者个人生活中的困扰等因素,可能导致程序员感到疲惫不堪,在这种状态下继续高强度地从事编程活动变得困难重重[^1]。长期处于高压环境下容易使人失去动力,进而影响到对于工作的积极性。 #### 对于文档记录的忽视 部分开发者不愿意花时间去撰详细的注释或说明文件来解释自己的思路与实现方式[^2]。虽然表面上看这样做可以节省当前的时间投入,但从长远来看却给后续维护带来了极大的不便,同时也反映出某些个体可能存在逃避责任的心理倾向——即希望通过减少前期努力而规避后期可能出现的问题处理负担。 #### 责任感缺失 专业级别的软件工程师应当对其产出物的质量负起完全的责任;只有确保程序无误并通过严格测试之后才会考虑将其部署上线[^3]。如果一位从业者经常性地跳过必要的验证环节匆匆交付成果,则很显然其内心深处并没有建立起足够的职业操守意识,这也是导致该群体成员间存在不同程度上“厌倦”情绪的一个重要原因。 #### 创新挑战带来的挫败感 有时候,面对全新的技术领域或是试图突破现有框架局限性的尝试也会让人望而生畏。例如阳振坤先生在其职业生涯初期所遭遇的情况一样,外界质疑声不断加上内部自我怀疑双重夹击下很容易使人心灰意冷,从而降低了进一步探索未知领域的欲望[^4]。 综上所述,上述几点只是众多可能性当中的一部分而已。每位程序员背后都有着独特的故事背景及成长轨迹,因此具体分析还需结合实际情况来进行考量。 ```python def is_programmer_motivated(): """判断程序员是否有动机""" factors = ["work_pressure", "personal_state", "documentation_attitude", "sense_of_responsibility"] for factor in factors: if not evaluate_factor(factor): return False return True def evaluate_factor(factor_name): # 假设这里有一个评估函数可以根据具体情况返回布尔值 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值