If data is the gas in a car, then, analytics is the car itself.
如果数据是汽车中的汽油,那么分析就是汽车本身。
Currently, there are a few trends and topics in tech without which the talk around technology and innovation is incomplete — analytics, artificial intelligence, blockchain to name a few. Augmented analytics is an extension of analytics that focuses on three main areas — Machine Learning, Natural language generation (NLP) and, Insight automation. The basic premise of augmented analytics is the elimination of painstaking tasks in the process of data analysis and, replacing them by automation thus, refocusing human attention on modern analytics, business process, and business value generation.
当前,技术中有一些趋势和主题,而围绕这些趋势和主题的讨论是不完整的,包括分析,人工智能,区块链等。 增强分析是对分析的扩展,它集中于三个主要领域-机器学习,自然语言生成(NLP)和Insight自动化。 增强分析的基本前提是消除数据分析过程中的艰巨任务,并以自动化代替它们,从而将人们的注意力重新集中在现代分析,业务流程和业务价值生成上。
As per predictions made by Gartner, over 40% of tasks involved in data science will be automated thus, increasing productivity, quickening the process, and initiating broader usage of data and analytics.
根据Gartner的预测,超过40%的数据科学任务将实现自动化,从而提高生产力,加快流程并开始广泛使用数据和分析。
Augmented analytics is touted as the subsequent wave of disruption in the field of data and analytics. The field will experience further adoption by data analysts and data scientists as more use-cases and value-generation is seen. Furthermore, Gartner suggests that automated analytics will be a “bridge between mainstream analytics done by business users and the advanced analytics techniques of data science.”
增强分析被吹捧为数据和分析领域随后的颠覆浪潮。 随着更多用例的出现和价值的产生,该领域将被数据分析师和数据科学家进一步采用。 此外,Gartner建议,自动化分析将成为“由企业用户完成的主流分析与数据科学的先进分析技术之间的桥梁”。
Through the use of statistical models and linguistic techniques to improve data management and performance, the core focus of augmented analytics is providing assistance in painstaking and time-consuming tasks in the stages of data analysis, data sharing, and business intelligence. This technology is not there to replace humans but supports them through enhanced interpretation capabilities. Additionally, it will enable companies to revolutionize the way business intelligence is produced and consumed.
通过使用统计模型和语言技术来改善数据管理和性能,增强分析的核心焦点是在数据分析,数据共享和商业智能阶段为繁琐而费时的任务提供帮助。 这项技术并不能代替人类,但是可以通过增强的解释能力来支持他们。 此外,它将使公司能够彻底改变商业智能的生产和使用方式。
How? Data analytics software with augmented analytics leverage machine learning and NLP to recognize the structure of the data and interact with it.The process typically starts similar to the traditional data analysis method: data is gathered, prepared, and then analyzed to extract meaningful insights. But instead of a human being involved in every stage of the process, augmented analytics will be automating the data gathering, preparation, and insights generation aspects. Humans will come into the picture for business decision making and implementation.
怎么样? 具有增强分析功能的数据分析软件利用机器学习和NLP来识别数据的结构并与之交互。该过程通常类似于传统的数据分析方法开始:收集,准备数据,然后进行分析以提取有意义的见解。 但是,增强的分析将使流程的数据收集,准备和见解生成方面的工作自动化,而不是让人们参与流程的每个阶段。 人类将参与商业决策和实施。
Currently, augmented analytics is being used to deliver improved and more accessible solutions to customers in areas like telecom, healthcare, government, retail, and so on.
当前,增强分析被用于为电信,医疗保健,政府,零售等领域的客户提供改进的和更易访问的解决方案。
Goal? The paramount goal of augmented analytics is to automate the painstaking and time-consuming part of collecting and preparing data which typically takes data analysts or data scientists 80% of the time. The ultimate goal of augmented analytics is to make a shift from data science to automation and artificial intelligence. The incorporation of augmented analytics will alter the analysis process from data collection to business recommendations to decision-makers.
目标? 增强分析的首要目标是使收集和准备数据的艰苦而费时的部分自动化,这通常使数据分析师或数据科学家有80%的时间。 增强分析的最终目标是从数据科学转向自动化和人工智能。 合并增强分析将改变分析过程,从数据收集到业务建议再到决策者。
Embedding AI into BI will make analytics work easier. Augmented analytics will undoubtedly help in better decision-making, accurate predictions through analytics leading to better products, prices, finances, and other aspects that drive business value.
将AI嵌入BI将使分析工作更加轻松。 毫无疑问,增强分析将通过分析带来更好的产品,价格,财务以及其他推动业务价值的方面,从而有助于更好的决策,准确的预测。
Potential Growth: As per Global Forecast to 2023, the global augmented analytics market size is expected to grow at a rate of about 30.6% from a market size of USD 4.8 billion in 2018 to USD18.4 billion in 2023. The exponential growth in the field will be seen as a way of simplifying the process of analyzing data and providing data analysts/data scientists more time for coming up with actionable insights.
潜在增长:根据2023年的全球预测,全球增强分析市场规模预计将以约30.6%的速度增长,从2018年的48亿美元增长到2023年的184亿美元。该领域将被视为简化数据分析过程并为数据分析师/数据科学家提供更多时间来提出可行见解的一种方式。
Currently and in the future, some of the business will use augmented analytics for: collecting critical data in a faster manner while maintaining data quality, better understanding data through automated reports while will save money and time, and, lastly, rather than losing majority data in the cleansing process, utilizing the huge amount of big data rather than leaving it unused or underused.
当前和将来,某些业务将使用增强分析来:在保持数据质量的同时更快地收集关键数据,通过自动报告更好地理解数据,同时节省金钱和时间,最后,不会丢失多数数据在清理过程中,要利用大量的大数据,而不要使它们闲置或使用不足。
Conclusion:With the increasing development and adoption of Artificial Intelligence and its subsets, the marriage between data science and Artificial Intelligence will help augmented analytics grow exponentially and at twice the rate of non-augmented (traditional) analytics. Through its automation capabilities, it will allow people to propose more questions for a dataset and automatically generate insights from easy, point-and-click methodology thus, enabling individuals and organizations to deliver better services and get more value to their business.
结论:随着人工智能及其子集的不断发展和采用,数据科学与人工智能之间的结合将有助于增强分析以指数形式增长,并且增长速度是非增强(传统)分析的两倍。 通过其自动化功能,它将使人们能够为数据集提出更多问题,并通过简单的点击方法自动生成见解,从而使个人和组织能够提供更好的服务并为其业务获得更多价值。
Key benefits: Delivers value faster | Enhanced Business Intelligence (BI) | Increase data literacy | More accuracy and trust.
主要优点:更快地提供价值| 增强型商业智能(BI)| 提高数据素养| 更高的准确性和信任度。
翻译自: https://towardsdatascience.com/the-development-of-augmented-analytics-a170592b8144