应用系统负载分析与容量预测_应用产品实践进行出色的预测分析

本文探讨了如何运用产品实践进行出色的预测分析,聚焦于应用系统的负载分析和容量预测。通过结合机器学习算法,如Python和Java中的数据挖掘技术,实现精准的预测,以提升系统性能和效率。
摘要由CSDN通过智能技术生成

应用系统负载分析与容量预测

Unlocking the potential of predictive analytics through a product development mindset

通过产品开发心态释放预测分析的潜力

The past few years have seen the number of data-driven organizations move from the minority to the majority. Data-driven decision making is everywhere from politics to advertising to consumer products. But when it comes to predictive analytics, we are still on a brink of a chasm — albeit an exciting one.

在过去的几年中,数据驱动型组织的数量已从少数转变为多数。 数据驱动的决策无处不在,从政治到广告再到消费品。 但是,在预测分析方面,我们仍然处于鸿沟之内,尽管这是令人兴奋的。

Organizations are responding to the need for advanced analytics in a number of ways, from building center of excellence data science teams to hiring an analyst and providing on-the-job training.

从建立卓越的数据科学团队中心到聘用分析师并提供在职培训,企业正在以多种方式满足对高级分析的需求。

But we’re seeing that very often, the most critical component gets missed. Between understanding the novel (and sometimes complex) concepts intrinsic to data science, deciding on a team structure with no prevailing one, and managing the often high costs, organizations too often miss the point of advanced analytics: guiding better decision making that results in better business outcomes.

但是,我们经常看到最关键的组件被遗漏了。 在理解数据科学固有的新颖(有时是复杂的)概念,决定一个不占优势的团队结构以及管理经常高昂的成本之间,组织经常会错过高级分析的要点:指导更好的决策以产生更好的结果业务成果。

Too often, the “why” is lost in technicals. In many ways, this is exactly where product development was at 30 years ago. We can leverage all lessons learned to make sure we extract real value and drive results. In the next few paragraphs, I have extracted the most critical elements in building successful products that can help teams in building effective models.

很多时候,“为什么”在技术上迷失了。 在许多方面,这正是30年前产品开发的起点。 我们可以利用所有汲取的经验教训来确保我们提取实际价值并推动结果。 在接下来的几段中,我提取了构建成功产品的最关键要素,这些产品可以帮助团队构建有效的模型。

Make sure the data-team knows who they are solving for.

确保数据团队知道他们要解决的是谁。

It is so intuitive to anyone building products that, to succeed, they have to focus on addressing the needs of a real user. This is the reason it became a common and necessary practice to start any product or even feature design with defining the target user. Any product manager from B2C to B2B knows he has to identify his users. This is no different for a predictive model; it can only be effective if addressing the need of at least one business owner within the organization. This business owner has to become a real partner in the process from definition, evaluation, deployment, testing and refinements. This is the only way to ensure you are solving her real pain and creating models she is excited to put in action.

对于任何制造产品的人来说,它是如此直观,以至于要成功,他们必须专注于满足实际用户的需求。 这就是为什么它成为定义目标用户来启动任何产品甚至功能设计的普遍必要做法的原因。 从B2C到B2B的任何产品经理都知道他必须确定其用户。 对于预测模型而言这没有什么不同。 只有满足组织内至少一位企业主的需要,它才有效。 在定义,评估,部署,测试和改进过程中,该企业所有者必须成为真正的合作伙伴。 这是确保您解决她的真正痛苦并创建她兴奋地付诸实践的模型的唯一方法。

Define what you are solving for.

定义您要解决的问题。

There is a reason why Simon Sinek’s legendary book ‘Start with why’ became a must-have read for any product manager. If you don’t have a clear and super focused understanding of your product’s ‘why’ and precisely what you are solving for, there is a very little chance it will bring value to your users. It is no surprise that defining the ‘why’ behind any product became the norm for any product development process. The same is true with building predictive models. This might sound trivial; however, so many ML-based models don’t have a clear definition of the business objective that is serving the business owner. Product with no clear definition of what it is solving might result in this beautiful and fully functional product that no one uses. The same way, failing to define the objective of the model might result in building a beautiful ML model that might never see the light of day.

西蒙·西内克(Simon Sinek)的传奇小说《为什么开始》成为任何产品经理必读的原因,这是有原因的。 如果您对产品的“原因”以及要解决的问题没有清晰和高度专注的理解,那么它几乎没有机会为用户带来价值。 定义任何产品背后的“为什么”成为任何产品开发过程的规范也就不足为奇了。 建立预测模型也是如此。 这听起来很琐碎; 但是,许多基于ML的模型没有明确定义为企业主服务的业务目标。 对解决方案没有明确定义的产品可能会导致这种美观且功能齐全的产品没有人使用。 同样,如果无法定义模型的目标,则可能会导致构建漂亮的ML模型,而这种模型可能永远不会出现。

Focus on experiments and feedback loop.

专注于实验和反馈循环。

Delivering successful products is a complex problem, and not just a complicated one. Complicated problems are hard to solve, but they are addressable with a set of recipes, meaning they can be solved with a linear approach that includes rules and processes. Complex problems involve too many unknowns and too many interrelated factors to be deduced to rules and procedures. Since product success relies on so many unknown, best practices today is to address it as a complex problem. To deal with that, product delivery includes constant experimentation and learning, each getting you closer to the desired state. The same applies to the process of building effective models. Even if your model is super accurate on past data, the path to effectiveness depends on many unknowns, like the adoption by the business owner, changes in the data, organizational changes, not to mention small things like COVID-19… To make sure your model produces business values, you have to measure its performance on live data. Based on that, you must have a way to refine it quickly, test its effectiveness, learn from it, improve it, and so on. This process has to be done in full collaboration with the business owner and within short cycles.

交付成功的产品是一个复杂的问题,而不仅仅是一个复杂的问题。 复杂的问题很难解决,但是可以通过一系列方法来解决,这意味着可以使用包括规则和过程的线性方法来解决这些问题。 复杂的问题涉及太多的未知数和太多的相关因素,无法推导出规则和程序。 由于产品成功取决于众多未知因素,因此当今的最佳做法是将其作为一个复杂的问题来解决。 为了解决这个问题,产品交付包括不断的实验和学习,每一次都使您更接近所需的状态。 这同样适用于构建有效模型的过程。 即使您的模型对过去的数据非常精确,有效性的路径也取决于许多未知因素,例如企业所有者的采用,数据的更改,组织的更改,更不用说COVID-19之类的小事了……确保您模型产生业务价值,您必须衡量其在实时数据上的绩效。 基于此,您必须有一种方法来快速优化它,测试它的有效性,从中学习,改进它,等等。 此过程必须在与业务所有者的全面协作下并在短周期内完成。

You have to know how the model will be used.

您必须知道如何使用模型。

Imagine this scenario: A product team for a commerce site builds the ability to find the perfect price for each product. They have tested how this feature works on a prototype, and it is working correctly. When you ask them how this will be used on the site, they say, “I don’t know…never really thought about this”. Sounds ridiculous, right? Well, that is the case for so many teams building predictive models. And this is the perfect path to failure. Just like product building, you need to start building the model with the end in mind. Will you need to push the data for another system to consume? Will you need to create visualizations that will empower manual action? Will the output be used daily or weekly? And so on. There needs to be a clear path on how these models become effective, i.e., bring real value to the business owner.

想象一下这种情况:商业站点的产品团队可以为每种产品找到理想的价格。 他们已经测试了此功能在原型上的工作方式,并且工作正常。 当您问他们如何将其在网站上使用时,他们说:“我不知道……从未真正考虑过这一点”。 听起来很荒谬,对不对? 好吧,很多团队都在建立预测模型。 这是通往失败的完美之路。 就像产品构建一样,您需要从头到尾开始构建模型。 您是否需要将数据推送给另一个系统使用? 您是否需要创建可视化以实现手动操作? 每天还是每周使用输出? 等等。 这些模型如何有效,即为企业所有者带来真正的价值,需要有一条清晰的道路。

This is why at pecan, we make sure any project starts by filling this statement:

这就是为什么在pecan ,我们确保通过填充以下语句来开始任何项目:

The [Who you are solving for] would like to [What you are solving for] so that we can use the outcome to [How will the model will be used].

[您要解决的人]想要[您要解决的问题],以便我们可以将结果用于[如何使用模型]

By having this definition and starting with the end in mind, we create the kind of iterative, collaborative, and fast building process that does not focus on just having a great model, but drives results for the business team.

通过具有此定义并从头开始考虑,我们创建了一种迭代,协作和快速的构建过程,该过程不仅专注于拥有一个出色的模型,而且可以为业务团队带来成果。

originally posted on LinkedIn

最初发布在LinkedIn上

翻译自: https://medium.com/the-innovation/applying-product-practices-for-excelling-predictive-analytics-f4805291e23c

应用系统负载分析与容量预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值