多标签分类 评价指标
Metrics play quite an important role in the field of Machine Learning or Deep Learning. We start the problems with metric selection as to know the baseline score of a particular model. In this blog, we look into the best and most common metrics for Multi-Label Classification and how they differ from the usual metrics.
指标在机器学习或深度学习领域中扮演着非常重要的角色。 我们从度量选择开始着手,以了解特定模型的基线得分。 在此博客中,我们研究了“多标签分类”的最佳和最常用指标,以及它们与通常的指标有何不同。
Let me get into what is Multi-Label Classification just in case you need it. If we have data about the features of a dog and we had to predict which breed and pet category it belonged to.
让我进入什么是多标签分类,以防万一您需要它。 如果我们有关于狗的特征的数据,并且我们必须预测它属于哪个品种和宠物。
In the case of Object Detection, Multi-Label Classification gives us the list of all the objects in the image as follows. We can see that the classifier detects 3 objects in the image. It can be made into a list as follows [1 0 1 1] if the total number of trained objects are 4 ie. [dog, human, bicycle, truck].
在对象检测的情况下,多标签分类为我们提供了图像中所有对象的列表,如下所示。 我们可以看到分类器检测到图像中的3个对象。 如果训练对象的总数为4,即[1 0 1 1],则可以将其列为以下列表。 [狗,人,自行车,卡车]。
This kind of classification is known as Multi-Label Classification.
这种分类称为多标签分类。
The most common metrics that are used for Multi-Label Classification are as follows:
用于多标签分类的最常见指标如下:
- Precision at k k精度
- Avg precision at k平均精度(k)
- Mean avg precision a