html编程 安装编程工具
Hi! Welcome to my blog.
嗨! 欢迎到我的博客。
Today, I am going to share with you some of the free tools which you could use to run a program! Are you excited?
今天,我将与您分享一些可用于运行程序的免费工具! 你兴奋吗?
Google Colab (Google Colab)
What is Colaboratory?
什么是协作?
It allows you to write and execute Python in your browser.
它允许您在浏览器中编写和执行Python。
What makes it special?
有什么特别之处?
It has no configuration required, has free access to GPUs and has easy sharing!
它不需要任何配置,可以免费访问GPU,并且易于共享!
Let’s try coding!
让我们尝试编码!
This is an interactive environment called a Colab Notebook. It lets you write text and execute code.
这是一个称为Colab Notebook的交互式环境。 它使您可以编写文本并执行代码。
Here are some markdown examples.
这是一些降价示例。
And now, let me share with you our exercise using Colab.
现在,让我与您分享我们使用Colab进行的练习。
To save this, click on File, then Save.
要保存此文件,请单击File ,然后单击Save 。
Also, you could save a copy of your Colab notebook directly to Github by clicking on File, then Save a Copy on Github.
同样,您可以通过单击File ,然后在Github上保存副本,将Colab笔记本的副本直接保存到Github。
You could choose the repository where you want to store the copy.
您可以选择要存储副本的存储库。
Want to learn more? Watch this Introduction to Colab.
想了解更多? 观看此Colab简介。
朱皮特 (Jupyter)
Welcome to Jupyter!
欢迎来到Jupyter!
This is an open-source web application that allows us to run code, equations, visualizations and narrative text. This is use for data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
这是一个开放源代码的Web应用程序,允许我们运行代码,方程式,可视化效果和叙述文本。 这用于数据清理和转换,数值模拟,统计建模,数据可视化,机器学习等。
Let’s do the exercise.
让我们做练习。
First, launch the Jupyter Notebook from Anaconda Navigator.
首先,从Anaconda Navigator启动Jupyter Notebook 。
Let us open FTW4-Github-Homework-1.
让我们打开FTW4-Github-Homework-1。
Click on New, then Python. This will create a new notebook with Python 3.
单击“新建” ,然后单击“ Python” 。 这将使用Python 3创建一个新的笔记本。
This is what it look like.
这就是它的样子。
Now, let’s do the coding exercise!
现在,让我们进行编码练习!
Try to run it by shift + enter. You will then see this as a result.
尝试通过shift + Enter运行它。 然后,您将看到此结果。
Cool, right?
酷吧?
Now, let’s try to drop all rows with missing values. Here is the code.
现在,让我们尝试删除所有缺少值的行。 这是代码。
You’ll see that all rows with missing values should have been removed and it is saved on your folder as a new file.
您会看到所有具有缺失值的行都应被删除,并将其作为新文件保存在您的文件夹中。
For more information about Jupyter, please feel free to visit jupyter.org
有关Jupyter的更多信息,请随时访问jupyter.org。
斯派德 (Spyder)
Spyder is also available in Anaconda Navigator. Let’s launch it!
Spyder也可在Anaconda Navigator中使用。 让我们启动它!
And now, let’s do the exercise using Spyder.
现在,让我们使用Spyder进行练习。
To run this, simply click on the green triangle, the Run File, or simply press f5.
要运行此程序,只需单击绿色三角形,“运行文件” ,或直接按f5键。
You should now see the generated csv file and the saved .py file in the same folder.
现在,您应该在同一文件夹中看到生成的csv文件和保存的.py文件。
翻译自: https://medium.com/swlh/back-to-basics-essential-tools-in-programming-ded75297531a
html编程 安装编程工具