苏门答腊犀牛如何教会我重新思考AI

Having worked in the most beautiful and unforgiving environments on every continent, I’m always a little surprised how anxious I still get when deploying one of my new technologies. The first real field test of a prototype is always hard for an inventor . . . Will it work like it did in the lab? What did I miss? I sure wish all these people weren’t watching as I flip the power switch . . .

在每个大洲最美丽,最无情的环境中工作后,我总是感到有些惊讶,当我部署一项新技术时仍然感到焦虑。 对于发明人来说,原型的首次实地测试总是很困难。 。 。 它会像实验室一样工作吗? 我错过了什么? 我确实希望当我按下电源开关时所有这些人都不要看着。 。 。

This time the project was even more intense. I was deploying a custom 3D-scanning rig that I built from $60,000 in parts to try to create a digital copy of one of the world’s last remaining Sumatran Rhinos at a sanctuary deep in the humid Indonesian jungle. This could be our one shot to capture a digital copy of the rhino that would help tell its story, or in the worst case provide a full digital record of the animal if conservation efforts failed. To up the stakes even more, there was a National Geographic crew filming every step of our efforts.

这次的项目更加紧张。 我当时正在部署一个定制的3D扫描设备,该设备用6万美元的零件建造而成,试图在潮湿的印度尼西亚丛林深处的圣所中创建世界上最后一只苏门答腊犀牛的数字副本。 这可能是我们拍摄到的犀牛数码副本的一个镜头,这将有助于讲述其故事,或者在最坏的情况下,如果保护工作失败,则可以提供动物的完整数字记录。 更重要的是,《国家地理》摄制组正在拍摄我们努力的每一步。

Image for post
Learn how National Geographic and other organizations are working to save them. Image: 3D render of scan by author 了解《国家地理》杂志和其他组织如何努力挽救它们。 图片:3D渲染作者扫描

My career has been a long series (a few decades now, but I try not to think about that too much!) of these types of sprints. Months of lab development of high-tech systems for conservation, exploration, or anti-poaching security applications punctuated by intense field deployments. Having a background in Computer Science and Artificial Intelligence from the Massachusetts Institute of Technology (MIT), I did not initially see myself ending up in a career where I was building technologies and algorithms for exploration and conservation. Working with National Geographic gave me a chance to merge my passions for computer science and AI with conservation, exploration, and storytelling.

我的职业生涯很长一段时间(几十年了,但是我尽量不要考虑太多!)。 为进行保护,勘探或反偷猎安全应用而开发的高科技系统需要数月的实验室开发,这是在密集的现场部署中出现的。 我拥有麻省理工学院(MIT)的计算机科学和人工智能背景,最初我并没有看到自己最终进入了为勘探和保护开发技术和算法的职业。 与《国家地理》的合作使我有机会将对计算机科学和AI的热情与保护,探索和讲故事相结合。

Being an Explorer and Fellow at National Geographic is synonymous with incredible adventures. Unlike most jobs, it really is as cool as it sounds. I have been on the deck of the Titanic 12,500’ deep in a 3-person submarine while battery technology I helped develop powered robots exploring the passenger cabins inside the wreck. Last year I helicoptered over Mount Everest as we captured a high-resolution aerial LIDAR map of the entirety of the world’s highest glacier. With our conservation partners I flew cameras strapped to the wing of a twin-seat aircraft over the Democratic Republic of the Congo on the front line of the fight against elephant poaching. I have spent many hundreds of hours in the pitch black underworld on missions like scuba diving in flooded caves to scan Mayan human-sacrifice victims and jamming my body through a vertical crack that is only 7-inches wide in some places, where falling would leave you wedged and broken, in a South African cave system to search for pre-human burials with ground penetrating radar.

作为国家地理杂志的探索者和研究员,是令人难以置信的冒险的代名词。 与大多数工作不同,它确实听起来很酷。 我曾在一艘3人潜水艇中的泰坦尼克号12,500'甲板上工作,而电池技术则帮助我开发了动力机器人来探索沉船内部的客舱。 去年,我拍摄了珠穆朗玛峰上空的直升飞机,当时我们拍摄了高分辨率的LIDAR空中地图,其中包括世界上最高的冰川。 在与大象偷猎作斗争的第一线,我与保护伙伴一道,将相机绑在双座飞机的机翼上,飞越刚果民主共和国。 我在漆黑的黑社会中度过了数百个小时的任务,例如在水淹的洞穴中进行水肺潜水以扫描玛雅人为牺牲品的受害者,并通过一些地方只有7英寸宽的垂直裂缝将我的身体卡住,在这些地方掉落会留下您在南非的一个洞穴系统中摔断了,用探地雷达搜寻人类前的葬礼。

Image for post
Gran Acuifero Maya project. Image by Gran Acuifero Maya项目将冰河世纪熊头骨在洪水淹没的洞穴中数字化的3D。 图片由 Jill Heinerth Jill Heinerth提供

Taken as a whole, this has left me inspired and excited for the role that technology and innovation can play in sharing and protecting the world’s most beautiful treasures while terrifying me with how fragile the things we care about really are.

总的来说,这让我感到鼓舞和兴奋,因为技术和创新在分享和保护世界上最美丽的宝藏中所扮演的角色,同时又让我们真正关心的事物变得如此脆弱使我感到恐惧。

For my work I was recently named the 2020 Rolex National Geographic Explorer of the Year. Each year this prestigious award is granted to an individual whose actions, achievements and spirit personify leadership in exploration and storytelling. The previous winners include filmmaker James Cameron, underwater photographer Brian Skerry, Steve Boyes and his Okavango Wilderness Project team, and environmental anthropologist Kenny Broad. These days the National Geographic Society mission - to use the power of science, exploration, education and storytelling to illuminate and protect the wonder of our world - is more important than ever. I am incredibly honored to be a part of that mission.

由于我的工作,我最近被评为2020年劳力士年度国家地理探险家。 每年,这一奖项都会授予个人,他们的行为,成就和精神是探索和讲故事的领导者。 此前的获奖者包括电影制片人詹姆斯·卡梅隆,水下摄影师Brian Skerry,史蒂夫·博伊斯和他的Okavango荒野项目团队,以及环境人类学家Kenny Broad。 如今,国家地理学会的使命-利用科学,探索,教育和讲故事的力量来阐明和保护我们世界的奇迹-比以往任何时候都更加重要。 我非常荣幸能够成为该使命的一部分。

Image for post
Rolex National Geographic Explorer of the Year Award. Image by author
劳力士年度国家地理探险家奖。 图片作者

While I was digitizing the Sumatran Rhino, I rendered a preview visualization on my laptop back at the lodge where we were staying in Indonesia. As I moved the 3D representation of the animal around on my screen, I was struck by how incredibly realistic it was. When I stopped moving my mouse, I could hardly tell that the view was not a photo. Having an artificial intelligence background, as well as a philosophical bent, I started thinking what is a “real” image? I certainly think of a photo I take with my phone as a real image, but what is that really except a bunch of numbers representing pixel values? If my synthetic digitized rhino is indistinguishable from a photo, is it as real as a photo? I realized that if I can create 3D models that look real to me, I can use these images to train AI systems. You see, data is the Achille’s heel of artificial intelligence. A good AI model needs a LOT of data, but in some of the most impactful applications - such as conservation, anti-poaching, security, and medical imaging - good data is hard to come by.

当我对苏门答腊犀牛进行数字化处理时,我回到了我们在印度尼西亚住所的旅馆里,在笔记本电脑上进行了预览可视化。 当我在屏幕上四处移动动物的3D表示时,它的真实性令人震惊。 当我停止移动鼠标时,我几乎看不出该视图不是照片。 具有人工智能背景和哲学倾向,我开始思考什么是“真实”图像? 我当然认为我用手机拍摄的照片是真实图像,但是除了一群代表像素值的数字以外,那到底是什么? 如果我的合成数字化犀牛与照片无法区分,那么它与照片一样真实吗? 我意识到,如果我可以创建对我而言真实的3D模型,则可以使用这些图像来训练AI系统。 您会看到,数据是人工智能的致命弱点。 好的AI模型需要大量数据,但是在某些最具影响力的应用程序(例如保护,反偷猎,安全性和医学成像)中,很难获得好的数据。

This idea led to my current adventure in founding Synthetaic, an AI and synthetic data company that is focused on some of the most high stakes use cases for artificial intelligence where limited sample islands have prevented high-quality predictive modeling. In many areas, there simply hasn’t been sufficient data to train networks effectively, for both still and moving images in particular.

这个想法导致了我目前的冒险历程,即创建了Synthetaic ,这是一家AI和合成数据公司,专注于人工智能领域中一些风险最大的用例,其中有限的样本岛阻碍了高质量的预测建模。 在许多领域,根本没有足够的数据来有效地训练网络,特别是对于静止图像和运动图像。

Image for post
Synthetaic Synthetaic提供

Photos of illegal poachers are scarce. So too are those of late-model Toyota pickups sporting extremist insignia. Real-time feedback for neurosurgeons in the operating room has been held back by limited image repositories of rare brain cancers. Racial bias runs rampant in facial recognition because of prevalence issues in training data.

非法偷猎者的照片很少。 后来的丰田皮卡带有极端主义标志的皮卡也是如此。 手术室中神经外科医师的实时反馈已被罕见的脑癌的有限图像存储所阻碍。 由于训练数据中的普遍性问题,种族偏见在面部识别中非常普遍。

I started Synthetaic to answer what I see as the two biggest questions in AI. What if edge cases no longer existed? What if training data was no longer a constraint?

我开始使用Synthetaic来回答我认为是AI中两个最大的问题。 如果边缘情况不再存在怎么办? 如果培训数据不再是约束怎么办?

Since we started Synthetaic, we have expanded the concept as we realized that by combining both 3D modeling and novel generative AI we could grow data faster, cheaper, and in a way more aligned with training state-of-the-art AI than any other data synthesis technique. These days we are generating human cancer microscopy images for inter-operative brain surgery decision making, growing chest x-ray images for COVID-19 detection, synthesizing aerial imagery for conservation projects, and creating data for several unsolved security intelligence needs. In each of these cases the data is indistinguishable from real images, but nearly instantly generated on our servers, and we can use this data to train AI models that outperform the current state-of-the-art.

自从开始Synthetaic以来,我们扩展了这一概念,因为我们意识到,通过将3D建模与新颖的生成型AI结合起来,我们可以更快,更便宜地增长数据,并且以与其他任何类型的先进AI训练方式更加一致数据综合技术。 这些天来,我们正在生成用于人类脑部手术决策的人类癌症显微镜图像,用于COVID-19检测的胸部X射线图像的增长,用于保护项目的航空图像的合成,以及为一些未解决的安全情报需求创建数据。 在每种情况下,数据都无法与真实图像区分开,但是几乎是在我们的服务器上即时生成的,我们可以使用这些数据来训练优于当前最新技术的AI模型。

Image for post
Synthetaic Synthetaic提供

We need technology as a force multiplier for the world’s hardest problems. Even what we now see as simple technologies, like the pulley or electric power have radically increased our capabilities as individuals and as a species. I believe that artificial intelligence, when taken to its full potential, will be such a tool. It will help out numbered rangers to protect vast areas from poaching. It will help doctors diagnose medical problems earlier when more treatment options are on the table. It will help keep us safe in an uncertain world. To fulfill the promises that AI offers, we need unimaginable amounts of input data. Synthetaic will grow this high-quality data to unlock “impossible” AI.

我们需要技术来解决世界上最棘手的问题。 甚至我们现在认为简单的技术,例如皮带轮或电力,也从根本上提高了我们作为个人和物种的能力。 我相信,如果充分发挥人工智能的潜力,它将是一种工具。 它将帮助有编号的护林员保护广大地区免遭偷猎。 当有更多治疗选择出现时,它将帮助医生及早诊断医疗问题。 这将有助于确保我们在不确定的世界中安全。 为了兑现AI提供的承诺,我们需要不可思议的输入数据量。 合成将增长 这些高质量的数据可以解锁“不可能的”人工智能。

翻译自: https://medium.com/@corey_38821/how-the-sumatran-rhino-taught-me-to-rethink-ai-4943b83fca3f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值