寻觅正方形旋转过程中动点形成的轨迹(八年级数学)

旋转变换与平移、轴对称一道,被称为初中平面几何三大变换,在八年级数学下册学习正方形之后,结合旋转变换,对学生审题看图能力提出了更高的要求,特别是其中动点的运动路径,也称轨迹,它的探寻也是八年级数学的难点,如何突破这个难点,仍然需要对基本概念和基本模型有深刻的认知。
题目
已知正方形ABCD和正方形CEFG,点M是AF的中点,连接BM、GM,将正方形CEFG绕着点C旋转.
(1)如图1,当点F在BC上,点C在AC上,请判断BM和GM的关系,并说明理由;
(2)如图2,当点F在AC上,点E在BC上,点G在CD上时,(1)中结论是不依然成立?请证明你的结论;
(3)若AB=3,CE=1,在正方形CEFG绕着点C旋转的过程中,请直接写出GM长度的取值范围.

解析:
(1)当点F在BC上,点G在AC上时,说明∠ABF=90°,∠AGF=90°,注意点M的特殊位置,它在AF中点,同时AF分别是Rt△ABF和Rt△AGF的公共斜边,因此BM=GM=AM,于是∠BMF=2∠BAF,∠GMF=2∠FAG,因此∠BMG=2∠BAG=90°,所以BM⊥GM;
(2)当点F在AC上,点E在BC上,点G在CD上时,又是一种特殊位置,当然可以“秒杀”了,如下图:

连接EM,作MN⊥BC,来看看怎么“秒杀”吧!AC是正方形ABCD对称轴,因此EM=GM,点M是AF中点,而MN经过梯形ABEF一腰中点且和两底平行,所以MN是梯形中位线,得到N是BE中点,因此MN是BE的垂直平分线,然后EM=BM,是不是秒杀掉了?
只不过梯形中位线定理超出了八年级数学目前的范围,因此这样的秒杀毫无意义,我们还是回归正常的思维过程来。
在上一个位置中,我们证明了BM=GM且BM⊥GM,当然也可以看作BM绕点M逆时针旋转了90°,因此我们抓住这个旋转变换,现在变换了位置,这个旋转依然存在吗?
答案是肯定的,观察△GMF,它就有可能是由另一个三角形旋转而来,如下图:

延长GF交AB于点H,连接HM,因为GH⊥AB,因此对于Rt△AHF来讲,HM是其斜边上的中线,所以HM=FM,再加上△AHF是一个等腰直角三角形,由三线合一可得∠MHA=45°,所以∠MHB=135°,同样∠AFH=45°,所以∠MFG=135°,我们还能证明矩形BEFH,将BH转换到EF,再由正方形转换至FG,得BH=GF,至此全等的三个条件全部具备,得△MHB≌△MFG,所以BM=GM,∠HMB=∠FMG,而∠HMB+∠BMF=90°,所以∠FMG+∠BMF=90°即∠BMG=90°,所以再次完成了BM⊥GM的证明,和(1)中结论完全相同;
(3)对于八年级学生来讲,这是个难点问题,很多学生不明所以,实质上点M的运动轨迹是个圆,圆心就是正方形ABCD的中心,但这个结论并不需要让学生证明,甚至也不需要知道,没学过圆,就别用圆的知识来解决,我们先来探索GM的长度变化。
我们已经证明过GM=BM,所以留意BM的变换即可,毕竟点B是定点,那么点M究竟是如何运动的呢?连接AC并取中点O,在△ACF中,OM始终是△AOC的中位线,等于CF的一半,而CF作为正方形CEFG的对角线,长度也是确定的,如下图:

好了,点B、点O是定点,点M是动点,于是当这三点共线时,分别对应两种最值,如下图:


BM最短时为√2,最长是2√2,因此GM的变化范围是√2≤GM≤2√2.
解题反思
中间那个“秒杀”的答案是我在网上搜索出来的,可能对于搜题类app,并不太会注重题目的适用范围,只要能解出来,就收录进来了,对于它的功能来讲,是完全正常的,但对于教学来讲,是不正常的,一旦学生拿这个秒杀法子当法宝,我不知道是该如何应对,说你用了超纳内容,你回答说你是天才,是不是真的,只能等潮水退走,再看有没穿裤子吧!
旋转类的问题,需要从全等角度去思考,即构造出合适的全等三角形,才是解决八年级此类问题的核心,而动点轨迹问题,其实就是考察学生对动点运动过程中,不变量的确定,在运动中寻找不变量,即使在九年级,也是一项必修技。
在正方形中,有几种特殊的位置,容易得到特殊图形,例如等腰直角三角形,矩形等,这要求对它们的性质与判定非常熟悉,才能在思维过程中如鱼得水,否则一处掉链子,整个思路就会断掉,例如在第3问过程中,就有学生始终不明白中位线是怎么来的,连接正方形对角线,交点就是对角线中心,这个认知来源于平行四边形对角线互相平分,如果遗忘或不熟练,这个坎硬是过不来。
所以,要想在解题中高效,请先在课堂上高效。
微信公众号:雪浪纸