三个数差的平方公式推导过程_数学上有哪些巧妙的证明过程?

9294037178899999d283d610843093ee.png

有关数学公式的证明很多,下面介绍几个常见公式的巧妙证明过程。

(1)自然数的立方和=自然数之和的平方

31c4841df72bd7ea403569a69f94f92d.png

上述等式的左边为自然数的立方和,等式的右边为自然数之和的平方。虽然通过分别推导出左右两边的计算公式就能证明该等式,但通过如下的图形很直观地就能证明上式:

0030574f33d6b83cedb47745efdc1c11.png

把自然数立方和的图形平铺看来,其中的正方体数量刚好是就是自然数之和的平方,所以就能证明上述等式成立。

(2)勾股定理

2314173d8efb8fc2fe7f7555f0b3377a.png

这个公式为勾股定理,我国在商朝时就已经发现了直角三角形的一个特例——勾三股四玄五,后来的中外数学家通过各种方法来证明这个公式。下面要介绍的是加菲尔德证法的变形方法,这可以很容易证明勾股定理:

0dc8fca9f5d41bb74f04bdf8a24004b7.gif

大正方形的面积为:

(a+b)^2

大正方形的面积也等于四个三角形的面积以及小正方形的面积之和:

4×(1/2ab)+c^2

由此可得下式:

(a+b)^2=4×(1/2ab)+c^2

化简之后,即可得勾股定理:

a^2+b^2=c^2

(3)欧拉恒等式

c025a691f57497ce6bf111cba83c959a.png

这个公式就是著名的欧拉恒等式,它被誉为最美的数学公式。一个十分简单的公式就结合了数学中最重要的常数——自然常数e、虚数单位i、圆周率π、自然数1、自然数0,以及最重要的数学符号——加号+、等号=。

欧拉恒等式源自于如下的欧拉公式:

be9037571ca3b1f7af5a206e82ef1001.png

对欧拉公式的左边e^(iθ)进行泰勒展开可得:

185075b61456681467b6f90ff9a924f8.png

再分别对cosθ和sinθ进行泰勒展开可得:

229993932f25ea57842eb8c596d3bbe5.png

显然,cosθ与sinθ之和刚好等于e^(iθ),由此就能证明欧拉公式成立。再令欧拉公式中的θ=π,即可得下式:

e^(iπ)=-1+0

对上式进行移项,最终就可以推导出欧拉恒等式的常见形式。

(4)证明圆周率是无理数

虽然人类早在三千多年前就已使用圆周率,但直到两百多年前,数学家才首次证明圆周率是一个无理数。圆周率是无理数的证明方法不少,下面要介绍的是数学家Ivan M. Niven给出的反证法,这种方法简单而又巧妙。

倘若π为有理数,必然存在整数a和b,使得下式成立:

π=a/b

构造如下两个函数:

c1c62a46120152e2d6a6b016fa2e5aaa.png
1373b8d5ff455cc38efc8fbeb334491e.png

其中n为正整数。

显然,f^k(0)、f^k(π)、F(0)以及F(π)都为整数。而且f(x)和f^k(x)都会满足f(x)=f(π-x),它们都在x=0以及x=π处可积。

再构造函数G(x)=F'(x)sinx-F(x)cosx,并对其进行求导可得:

92d4442fd3e88f4bfdbcde1309411a27.png

对上式两边从0到π都进行积分可得下式:

f3c11c421d87b1aac4c234f56d7adb7f.png

因为F(0)以及F(π)都为整数,故F(π)+F(0)亦是整数。当x∈(0, π)时,显然有f(x)>0且sinx>0,故f(x)sinx>0,所以F(π)+F(0)>0,并且f(x)sinx在[0, π]上的积分为正整数。

当x∈(0, π)时,显然有a-bx

62b47250f5ec7099f6e2b0e85d6e0a29.png

显然,当n→+∞时,f(x)sinx→0,由夹逼定理可得,f(x)sinx在[0, π]上的积分也会趋于0。然而,上述的推导表明这个积分是正整数,所以两者出现了矛盾。这意味着π=a/b不成立,所以圆周率必然为一个无理数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值