matlab模拟伯努利实验,matlab仿真随机数的发生

本文介绍了如何使用MATLAB进行伯努利、泊松、均匀和正态分布的随机数模拟。通过实例展示了MATLAB函数binornd、poisspdf、unifrnd和normrnd的用法,帮助读者理解不同分布的随机数生成过程。
摘要由CSDN通过智能技术生成

概率论和数理统计实验(matlab中实现)

一.伯努利漫衍

R=binornd(N,P); //N,P为二次漫衍的俩个参数,返回遵守参数为N,P的二项漫衍的随机数,且N,P,R的形式相同。

R=binornd(N,P,m); //m是一个1*2向量,它为指定的随机数的个数,其中N,P划分代表返回值R中行与列的维数;

R=binornd(N,P,m,n); //m,n划分示意R的行数与列数;

例:一个射击手举行射击竞赛,假设每枪射击掷中率为0.45,每枪射击10次,共举行10万轮,就可以用matlab去仿真该实验的可能情形。

编写代码如下:

x=binornd(10,0.45,100000,1);

hist(x,11)

效果如图[射击效果直方图]

d4c2e0e6b05c57a032bc4b5924b55dbf.png

从上图可以看出,该射击员每轮最有可能掷中4环。

二.泊松漫衍随机数

y=poisspdf(x,lambda); 求取参数为Lambda的泊松漫衍的概率密度函数值。

我要考察取差别的Lanbda值,使用poisspdf函数绘出来的泊松漫衍概率密度图像。(划分取2.5,5,10)

在matlab中编程

x=0:20;

y1=poisspdf(x,2.5);

y2=poisspdf(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值