基于TOM算法库的ECC加密算法的C语言设计与实现 研究生 徐立均 内容: 一、源代码下载
二、ECC算法的设计思想三、椭圆曲线参数的选取和基点的确定 四、椭圆曲线的点加和纯量乘法 五、加密文件的读入与输出
六、密文的存取和读入 七、ECC加密的实现八、ECC解密的实现 九、测试结果及分析
一、源代码下载
本文使用了TOM算法库实现了椭圆曲线公钥密码体制,能对各类不同的磁盘文件进行加密
和解密。
1 请下载可执行程序MY_ECC.exe,此程序无需任何额外的LIB或DLL,可在Windows下
独立运行,运行情况如下:
2 请下载源代码source.rar:
编译此源代码需要使用TOM的高精度算法库
MathLib.lib
和相关的头文件
tommath.h
tommath_class.h
tommath_superclass.h
一并打包在source.rar中,请下载
3 对于TOM的高精度算法库的详细说明,请看本站C语言:
二、 ECC算法的设计思想
根据椭圆曲线进行加密通信的过程,首先选定一个适合加密的椭圆曲线Ep(a,b),并取
椭圆曲线上一点,作为基点G。选择一个私有密钥k,并生成公开密钥K=kG。加密时,将
明文编码到Ep(a,b)上一点M,并产生一个随机整数r(r < n)。计算点C1=M+rK;C2=rG。
将C1、C2存入密文。解密时,从密文中读出C1、C2,计算C1-kC2,根据:
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M,
解得的结果就是点M,即明文。
三、椭圆曲线参数的选取和基点的确定
并不是所有的椭圆曲线都适合加密,y^2=x^3+ax+b是一类可以用来加密的椭圆曲线,也
是最为简单的一类。下面我们就选用y^2=x^3+ax+b作为我们的加密曲线。这条曲线定义在Fp
上:两个满足下列条件的小于p(p为素数)的非负整数a、b:4a3+27b2≠0 (mod p) 则满足
下列方程的所有点(x,y),再加上 无穷远点∞ ,构成一条椭圆曲线。y^2=x^3+ax+b(mod p)
其中 x,y属于0到p-1间的整数,并将这条椭圆曲线记为Ep(a,b)。
参数P的选取:p 当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一
般安全要求;我们将p取为200比特位的素数。
参数a、b的选取:先随机产生小于P-1的正整数作为参数a,依据条件
4a3+27b2≠0 (mod p)判断随机产生的小于P-1的正整数是否适合作为参数b.
基点的确定:随着参数a,b,p确定,这条曲线y^2=x^3+ax+b就定下来了。先随机产生0
到p-1间的整数作为基点x坐标,计算x^3+ax+b的结果再开方就得出基点y坐标。
上述具体程序实现如下:
……
while(1)
{
//4a3+27b2≠0 (mod p)
GetPrime(b,40);//先随机产生一个参数B
mp_expt_d(a, 3, &temp1);
mp_sqr(b, &temp2);
mp_mul_d(&temp1, 4, &temp3);
mp_mul_d(&temp2, 27, &temp4);
mp_add(&temp3, &temp4, &temp5);
mp_mod(&temp5,p,&temp);
if(mp_cmp(&temp, &compare)!=0 )
{
break; //满足条件跳出循环
}
}
//y2=x3+ax+b,随机产生X坐标,根据X坐标计算Y坐标
GetPrime(x1,30);// 随机产生30比特长的X坐标
mp_expt_d(x1, 3, &temp6);
mp_mul(a, x1, &temp7);
mp_add(&temp6, &temp7, &temp8);
mp_add(&temp8, b, &tempx);
mp_sqrt(&tempx, y1);//得到Y坐标
……..
私钥的确定:随机选取1到P-1之间的素数作为私钥d.
公钥的确定:由d乘我们所确定的基点得到公钥K,即K=dG。
四、 椭圆曲线的点加和纯量乘法
对于一般的椭圆曲线方程y^2+a1xy+a3y=x^3+a2x^2+a4x+a6, 设点P(x1,y1),Q(x2,y2)的和
R(x3,y3)的坐标。R(x3,y3)的计算公式如下:
x3=k^2+ka1+a2+x1+x2;
y3=k(x1-x4)-y1-a1x4-a3;
其中k= (y1-y2)/(x1-x2)
当P≠Q时
k=(3x2+2a2x+a4 -a1y) /(2y+a1x+a3)
当P=Q时,对于椭圆曲线方程Y^2=X^3+aX+b,上述的公式变为:
x3=θ2- x1-x2;
y3=θ(x1-x3)-y1
其中θ=(y1-y2)/(x1-x2) 当P≠Q时;
θ=(3x1^2-a)/2y1 当P=Q时
由上述运算公式,可以得出点积mP的运算,即mP=P+P+…+P,共m个P相加,这里m∈N.
具体算法为:设m的二进制表示为
m=(m_n-1m_n-2…m1m0),其中m_n-1=1,Q=P,从左到右依次计算:
for(I=n-2 to 0)
{ Q=2Q;
if(mi ==1) Q=Q+P;
}
则Q=mP.
Return ;
函数原形为:
bool Ecc_points_mul(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int *d,mp_int
*a,mp_int *p)
成功返回true。
int Two_points_add(mp_int *x1,mp_int *y1,mp_int *x2,mp_int *y2,mp_int *x3,mp_int
*y3,mp_int *a,bool zero,mp_int *p)
成功返回1。
五、加密文件的读入与输出
mp_digit只用28比特,因此一个单元最多可存放三个半字节。为充分利用存取空间,采用
一个单元放三个半字节。
1. 函数putin()实现将明文的二进制比特串赋给mp_int数a:
主要循环部分及说明如下:
//chlong为要存入的字符数组长
for(j=0;j<<="(mp_digit)CHAR_BIT;" 存入高8位并向左移8位,以便放入下一个字符="" 存入字符="" 左移8位="" 并向左移4位,以便放入下一个字符的高四位="" *temp--="" 255)="">> 4); //存放被切分的字符的高四位,temp跳回前一个单元
//存入第一单元
*temp |= (mp_digit)(ch[i-4] & yy); //存放被切分的字符的低四位,yy=(mp_digit)15
*temp <<= (mp_digit)CHAR_BIT; //向左移8位,以便放入下一个字符
*temp |= (mp_digit)(ch[i-5] & 255); //存入字符
*temp <<= (mp_digit)CHAR_BIT; //左移8位
*temp |= (mp_digit)(ch[i-6] & 255); //存入字符
*temp <<= (mp_digit)CHAR_BIT; //左移8位
*temp++ |= (mp_digit)(ch[i-7] & 255); //存放被切分的字符的低四位,temp跳到后一个单元
temp++; //再向后跳一单元,这样和下次的++temp实现每次循环跳两个单元
}
函数原型为:int putin(mp_int *a,char *ch,int chlong)
成功返回0
2.函数chdraw()实现将mp_int数a中的比特串还原为字符串并赋给字符串ch:
chdraw和putin是相反过程,将putin存入字符的过程反过来取出字符。
函数原型为:int chdraw(mp_int *a,char *ch)
成功返回0
六、密文的存取和读入
此过程难点是如何保证存入文件后,再从文件中读取密文并存入mp_int型数后,和原
存放密文的mp_int型数不能有一个比特位的改变。
存取时先存*mp->dp的最高8位,再依次往下存后面3个8位。依据*mp->dp的特点,
最高8位为0000xxxx,因此,可将255作为一个密文段的结束标志,把前一密文段和后一
密文段区分开。这样在密文文件中,密文的存取结构为:
0000xxxx|xxxxxxxx|xxxxxxxx|xxxxxxxx|0000xxxx|……|11111111|0000xxxx|xxxxxxxx|…..
0字节 1字节 2字节 3字节 4字节 4x字节 下一加密段
x为1或0
利用fgetc每次读取一个字符,并赋值给一个字符数组。当a[i]=255,且i%4=0时截止。
读出之后赋值就简单了。
存密文:int chmistore(mp_int *a,FILE *fp) 成功返回0
把密文赋给mp_int型数a:int miwendraw(mp_int *a,char *ch,int chlong) 成功返回0
七、ECC加密的实现
加密时因P长度取值为200比特,所以所取明文长度应在0到199比特之间,另外需
要一个附加的标志字节char(255),所以一次取明文最大长为191比特。在本程序中一次取
20字节。和RSA不同,ECC运算是基于点的运算。一个点有两个参数,一个X坐标,一
个Y坐标。所以取明文时需一次取两段,前一段做X坐标,后一段做Y坐标。因此,一次
加密明文为40字节。由于每次加密要取两段,引发了另外一个问题:当加密文件末尾所剩
明文长度小于20字节时的处理。在本程序中,我们的解决是将剩余明文取作X,而将Y取
作0,且不加标志字节char(255),这样解密时,程序在Y中找不到标志字节char(255),就
不会往解密文中存任何东西。
取得明文后,产生一个随机整数r(r
C2坐标c1x,c1y,c2x,c2y依次存入密文文件。
for(i=0; i 0)// Residue为剩余字符数
{
if (Residue <= enlongtemp )
{
fread(miwenx,1,Residue,fp);//读入字符串
miwenx[Residue]=char(255);
putin(&mx, miwenx,Residue+1);//文件存入
mp_zero(&my);
}
else
{
fread(miwenx,1,enlongtemp,fp);//读入字符串
miwenx[enlongtemp]=char(255);
fread(miweny,1,Residue-enlongtemp,fp);//读入字符串
miweny[Residue-enlongtemp]=char(255);
putin(&mx, miwenx,enlongtemp+1);//文件存入
putin(&my, miweny,Residue-enlongtemp+1);//文件存入
}
//加密
Ecc_points_mul(&c2x,&c2y,px,py,&r,a,p); //C2=rG
Ecc_points_mul(&tempx,&tempy,qx,qy,&r,a,p); // rK
Two_points_add(&mx,&my,&tempx,&tempy,&c1x,&c1y,a,zero,p);// C1=M+rK
//保存密文
chmistore(&c1x,fq);
chmistore(&c1y,fq);
chmistore(&c2x,fq);
chmistore(&c2y,fq);
}
函数原型为:void Ecc_encipher(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int
*a,mp_int *p);
八、ECC解密的实现
解密时,依据存密文时放入的结束标志255,读入密文。依次取4段,调用miwendraw
将密文存入mp_int型数中,还原为加密时存入的点C1和C2坐标c1x,c1y,c2x,c2y。依据
C1-dC2=M+rK-k(rG)=M+rK-r(kG)=M。计算C1-dC2 (d为私钥),得到明文点坐标mx,my。其
中两点减的计算可如下:
-Q=(X,-Y);P-Q=P+(-Q);-Y=P-Y;
计算C1-dC2完毕后调用chdraw取出mp_int中的明文比特串,依次存入解密文件中,
完成解密。
while(!feof(fp))
{
//取C1点X坐标
i=0;
while(1)
{
stemp[i]=fgetc(fp);
if(i%4==0)
{
if(int(stemp[i]&0xFF) == 255 ) goto L1;
}
i++;
}
L1: miwendraw(&c1x, stemp, i);
………… //取其他坐标
Ecc_points_mul(&tempx, &tempy, &c2x, &c2y, k, a, p); // 计算dC2
mp_neg(&tempy, &temp);// -Q=(X,-Y)
Two_points_add(&c1x,&c1y,&tempx,&temp,&mx,&my,a,zero,p);
int chtem;
chtem=chdraw(&mx,stemp);//从ming中取出字符串
//保存解密结果
for(int kk=0;kk < chtem;kk++)
{
fprintf(fq,"%c",stemp[kk]);
}
chtem=chdraw(&my,stemp);//从ming中取出字符串
//保存解密结果
for(kk=0;kk < chtem;kk++)
{
fprintf(fq,"%c",stemp[kk]);
}
}
函数原型为:void Ecc_decipher(mp_int *k, mp_int *a,mp_int *p);
九、测试结果及分析
为验证系统的加密解密功能, 对系统进行了如下测试:
测试环境
Intel p4 CPU 1.5G 256M RAM windows2000 advanted server
测试结果
利用系统对文本文件、BMP、WORD、EXCEL、EXE等文件进行加密,然后解密。
验证结果表明,给定的明文经系统加密后再解密的结果完全一致,没有一个比特的偏差。较好
的实现了ECC的功能。
转载http://210.40.7.188/NEW/ECC_XLJ/index.htm