c语言dp算法,C++动态规划dp算法题

本文介绍了动态规划在多个信息技术问题中的应用,包括找硬币换钱的方法、跳台阶问题(斐波那契数列)、走矩阵求最短路径、最长上升子序列问题以及最长公共子序列长度的计算。此外,还讨论了背包问题的解决方案,展示了如何通过优化降低算法复杂度。这些问题的解法涉及到一维和二维动态规划数组的使用,以及在特定情况下如何减少空间复杂度。
摘要由CSDN通过智能技术生成

问题1:找硬币,换钱的方法

输入:

penny数组代表所有货币的面值,正数不重复

aim小于等于1000,代表要找的钱

输出:

换钱的方法总数

解法1:经典dp,空间复杂度O(n*aim)

class Exchange {

public:

int countWays(vector penny, int n, int aim) {

if (penny.empty()||n == 0)

return 0;

vector > dp(n,vector(aim+1)); //二维数组dp

for (int i = 0;i < n;i++) {

dp[i][0] = 1;

}

for (int j = 1;j < aim+1;j++) {

dp[0][j] = j%penny[0] == 0?1:0;  //只需要算dp[0][j]

}

for (int i = 1;i < n;i++) {

for (int j = 1;j < aim+1;j++) {

dp[i][j] = (j-penny[i]) >= 0?(dp[i-1][j] + dp[i][j-penny[i]]):dp[i-1][j];  //这是关键,不用管penny【i】到底使用了几次,直接减去1次使用就好

}

}

return dp[n-1][aim];

}

};

解法2:与上面的问题一样,只不过在求dp时只使用1维数组来做;使用迭代,时间复杂度一样:

class Exchange {

public:

int countWays(vector penny, int n, int aim) {

vector dp(aim + 1);

for (int i = 0; i <= aim; i++)

if (i % penny[0] == 0)

dp[i] = 1;

for (int i = 1; i < n; i++)

for (int j = 1; j <= aim; j++)

if ( j >= penny[i]) //条件,如果不满足就直接等于上轮的结果,不用做修改

dp[j] += dp[j - penny[i]];

return dp[aim];

}

};

问题2:跳台阶问题:

其实是斐波那契问题,f(n)=f(n-1)+f(n-2)

#include

using namespace std;

int main(){

int step;

while(cin>>step){

vector dp(2,1); //初始化赋值

dp[1]=2;

int temp;

for(int i=3;i<=step;i++){

temp=dp[0];

dp[0]=dp[1];

dp[1]=dp[1]+temp;

}

if(step==1) dp[1]=1;;

cout<

}

return 0;

}

问题3:走矩阵,求路劲最小和,或者是求整个路径

n×m的map,则 f(n,m)=min(f(n-1,m),f(n,m-1))+map[n][m];

由于这里和问题1类似,可以只用到一个一维数组求解;

class MinimumPath {

public:

int getMin(vector > map, int n, int m) {

vector dp(m,0);

dp[0] = map[0][0];

for (int i = 1,j = 0;i < m;i++,j++) {

dp[i] = map[0][i]+dp[j];

}

for (int i = 1;i < n;i++) {

dp[0] += map[i][0];    //不能忘了dp[0]的更新

for (int j = 1;j < m;j++) {

dp[j] = min(dp[j],dp[j-1])+map[i][j]; //如果求路径,则在这里记录,需要额外存储空间

}

}

return dp[m-1];

}

};

问题4:最长上升子序列问题(LIS)

解法:O(N方)用dp数组的dp[i]记录下以A[i]结尾的递增子序列中最长的长度,计算dp[i+1]时,遍历A[0~i]找到比A[i+1]小的元素,再比较与这些元素对应的dp数组中的值,找到最大的一个再加1,赋值给dp[i+1]。

class LongestIncreasingSubsequence {

public:

int getLIS(vector A, int n) {

if (A.empty()||n == 0)

return 0;

vector dp(n,0);

dp[0] = 1;

int resMax = 0;

for (int i = 1;i < n;i++) {

int tempMax = 0;

for (int j = 0;j < i;j++) {

if (A[i] > A[j])

tempMax = max(tempMax,dp[j]);

}

dp[i] = ++tempMax;

resMax = max(resMax,dp[i]);  //记录最大的上升子序列长度,因为当前i可能并不在最长上升子序列中

}

return resMax;

}

};

如上的实现复杂度为N方,可以增加归纳的假设,增加b[k]存储长度为k最长子序列最小结尾元素,那么可以利用二分查找,使用logn查找到插入点,对于每次比较,要么直接比较b【k】比它大直接k+1,更新b【k+1】,要么二分查找到位置,更新b【j】,所以最终复杂度为nlogn(如果数据量大的话,使用该算法较好)

2ebf1256a9f232c0be159713c5115cf3.png

问题5:最长公共子序列长度(LCS)

ff64347316511d5bfe2fb2f3fc043cc4.png

96590407b697841f1478e9b50c59b823.png

上图可以看出使用了斜侧的比较,所以不能再使用1维数组了

class LCS {

public:

int findLCS(string A, int n, string B, int m) {

if (A.empty()||n==0||B.empty()||m==0)

return 0;

vector > dp(n,vector(m));

//下面是两个for的初始化,当出现第一个相等的时,后面的都直接赋值为1;

for (int i = 0;i < m;i++) {

if (A[0] == B[i]) {

for (int j = i;j < m;j++)

dp[0][j] = 1;

break ;

}

}

for (int i = 0;i < n;i++) {

if (B[0] == A[i]) {

for (int j = i;j < n;j++)

dp[j][0] = 1;

break ;

}

}

for (int i = 1;i < n;i++) {

for (int j = 1;j < m;j++) {

if (A[i] == B[j])

dp[i][j] = dp[i-1][j-1]+1;

else

dp[i][j] = max(dp[i-1][j],dp[i][j-1]);

}

}

return dp[n-1][m-1];

}

};

上面的方法中初始化第一行和第一列有点麻烦,增加了额外的语句,可以增加数组一行和一列来优化代码:

class LCS {

public:

int findLCS(string A, int n, string B, int m) {

vector > dp(n+1,vector(m+1,0));

for (int i =1;i<=n ;++i){

for (int j=1; j<=m; ++j){

if (A[i-1] == B[j-1]){

dp[i][j]  = dp[i-1][j-1]+1; //第1行也可以照此直接初始化

}

else {

dp[i][j] = max( dp[i-1][j] ,dp[i][j-1]);

}

}

}

return dp[n][m];

}

};

问题6:背包

N件物品,价值记录在数组V,重量记录在数组W,背包总重量最大为cap,要求总价值最大;

class Backpack {

public:

int maxValue(vector w, vector v, int n, int cap) {

if (w.empty()||v.empty()||n==0||cap==0)

return 0;

vector > dp(n,vector(cap+1));

for (int j = 1;j < cap+1;j++) {

dp[0][j] = w[0] <= j?v[0]:0;

}

for (int i = 0;i < n;i++) {

dp[i][0] = 0;

}

for (int i = 1;i < n;i++) {

for (int j = 1;j < cap+1;j++) {

if (w[i] > j)

dp[i][j] = dp[i-1][j];

else

dp[i][j] = max(dp[i-1][j],v[i]+dp[i-1][j-w[i]]); //由于该问题每个物品最多只能放1件,如果不限制个数的话,则在这里修改条件

}

}

return dp[n-1][cap];

}

};

由于没有用到斜侧的比较,所以可以使用1维的数组:

class Backpack {

public:

int maxValue(vector w, vector v, int n, int cap) {

if (w.empty()||v.empty()||n==0||cap==0)

return 0;

vector dp(cap+1,0);

for (int i = 0;i < n;i++) {

vector last(dp);

for (int j = 1;j < cap+1;j++) {

dp[j] = j < w[i]?last[j]:max(last[j],v[i]+last[j-w[i]]);

}

}

return dp[cap];

}

};

0b1331709591d260c1c78e86d0c51c18.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值