java random long_java中Random(long seed)方法与rRandom()方法的使用产生随机数

Random 类作为JAVA中用于产生的随机数 ,new  Random(10)  :10是种子数。

注意:Random 的一个特点是:相同种子数的Random对象,对应相同次数生成的随机数字是完全相同的

验证代码:

Random r1 = new Random(10);

Random r2 = new Random(10);

for(int i = 0;i 

System.out.println(r1.nextInt(5));

}

System.out.println("++++++++++++++++++++++");

for(int i = 0;i 

System.out.println(r2.nextInt(5));

}

结果:r1 产生的随机数

3

0

3

0

++++++++++++++++++++++

3       r2产生的随机数

0

3

0

换成:

System.out.println(r1.nextDouble(5))System.out.println(r2.nextDouble(5))

结果:

0.7304302967434272

0.2578027905957804

0.059201965811244595

0.24411725056425315

++++++++++++++++++++++

0.7304302967434272

0.2578027905957804

0.059201965811244595

0.24411725056425315

分析: 虽然说是随机数发生器,但是还是按照某种算法一步一步执行下去的,种子数一定算法一样那么同一时刻的产生的数值当然该一样了!!

* @param seed the initial seed

* @see #setSeed(long)

*/

++++++++++++++++++带种子数的构造方法+++++++++++++

public Random(long seed) {

if (getClass() == Random.class)

this.seed = new AtomicLong(initialScramble(seed));

else {

// subclass might have overriden setSeed

this.seed = new AtomicLong();

setSeed(seed);

}

}

++++++++++++++netInt方法带参数的那个源码++++++++++++

* @since 1.2

*/

public int nextInt(int n) {

if (n <= 0)

throw new IllegalArgumentException("n must be positive");

if ((n & -n) == n) // i.e., n is a power of 2

return (int)((n * (long)next(31)) >> 31);

int bits, val;

do {

bits = next(31);

val = bits % n;

} while (bits - val + (n-1) < 0);

return val;

}

可见Random的种子要求 大于0 的 。。。

+++++++++++++++nextDouble方法实现+++++++++++

public double nextDouble() {

return (((long)(next(26)) << 27) + next(27))

/ (double)(1L << 53);

}

+++++++++++++++nextFloat方法实现+++++++++++++

public float nextFloat() {

return next(24) / ((float)(1 << 24));

}

+++++++++++++++++nextInt方法实现:++++++++++

public int nextInt() {

return next(32);

}

可见所有的随机数产生都和一个叫 next方法有关,这个方法是这样的:

* @since 1.1

*/

protected int next(int bits) {

long oldseed, nextseed;

AtomicLong seed = this.seed;

do {

oldseed = seed.get();

nextseed = (oldseed * multiplier + addend) & mask;

} while (!seed.compareAndSet(oldseed, nextseed));

return (int)(nextseed >>> (48 - bits));

}

一般计算机的随机数都是伪随机数,以一个真随机数(种子)作为初始条件,然后用一定的算法不停迭代产生随机数,下面介绍两种方法:算法1:平方取中法。

1)将种子设为X0,并mod 10000得到4位数

2)将它平方得到一个8位数(不足8位时前面补0)

3)取中间的4位数可得到下一个4位随机数X1

4)重复1-3步,即可产生多个随机数

这个算法的一个主要缺点是最终它会退化成0,不能继续产生随机数。

算法2:线性同余法

1)将种子设为X0,

2)用一个算法X(n+1)=(a*X(n)+b) mod c产生X(n+1)

一般将c取得很大,可产生0到c-1之间的伪随机数

该算法的一个缺点是会出现循环。

拓展:

Math类中也有一个random方法,该random方法的工作是生成一个[0,1.0)区间的随机小数。

通过阅读Math类的源代码可以发现,Math类中的random方法就是直接调用Random类中的nextDouble方法实现的。

* @see Random#nextDouble()

*/

public static double random() {

Random rnd = randomNumberGenerator;

if (rnd == null) rnd = initRNG();

return rnd.nextDouble();

}

参考:http://www.cnblogs.com/Coffee-guy/p/3378776.html

http://blog.sina.com.cn/s/blog_4b3120470100k96z.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值