所属技术领域
本创发明涉及ct图像处理领域和神经网络领域,特别涉及边缘检测技术和bp神经网络,通过二值图像来研发一种新的边缘检测算子来减小边缘监测图像的误差,从而使bp神经网络预测的边缘图像更加准确。
背景技术:
石油是一种重要的不可再生能源,也是当今世界上重要的战略资源,这体现在日常生活、经济、工业生产乃至军事医学等方方面面,所以石油的开采和利用十分重要。而随着图像处理技术的发展,将岩心ct图像转化成数字图像进行处理,来获得边缘检测图像和建立岩心图像的三维孔道,这更便于观察孔道的内部结构,从而可以更好地指导提高原油采收率的工业实践。
而在利用现有的边缘检测算子所得到的岩心边缘图像中,经常会出现孔洞边缘的0像素点堆叠和断连情况,这对建立三维孔道和观察岩心内部结构都会造成误差,所以研发新的边缘检测算子来减少误差显得十分必要。同时,bp神经网络算法在现如今的科研项目中应用普遍,所以将其用于边缘检测技术可以为数字岩心图像处理技术开辟一条新的道路。
技术实现要素:
针对现有的边缘检测算子所检测的边缘图像会出现的0像素点堆叠和断连情况,本发明会采取一种新边缘检测的算法,来减少边缘检测图像的误差,并结合bp神经网络技术准确的预测岩心孔洞的边缘。
本发明解决传统边缘检测算法存在的问题的技术方法为:
通过micro-ct设备对真实岩心进行扫描获得岩心ct图像;因