同时运行多个模型_如何在多GPU上训练PyTorch模型

本文详细介绍了如何在PyTorch中利用nn.DataParallel和nn.DistributedDataParallel在多个GPU上进行模型训练。讨论了两者的区别,包括DataParallel在单台机器上运行,而DistributedDataParallel支持跨多台机器的并行训练。文章还提到了内存管理和Apex混合精度训练,以解决多GPU训练时可能出现的问题。
摘要由CSDN通过智能技术生成
2736c4663ea6e27a2cb8dc1d1e42c94a.png

深度学习模型的最大问题之一是它们经常很大,往往无法在单个GPU中进行训练。PyTorch构建了两种在多个GPU中实施分布式训练的方法:nn.DataParalllel和nn.DistributedParalllel。它们是包装和更改代码以及增加在多个GPU中训练网络的功能的简单方法。

nn.DataParallel更容易使用,但只需要在一台机器上使用。nn.DataParalllel在每个批次中,仅使用一个过程来计算模型权重并将其分配给每个GPU。

在这篇文章中,我会详细介绍nn.DataParallel和nn.DistributedDataParalllel是如何工作的。还将介绍两者之间的主要区别以及如何在多个GPU中进行训练。首先来看神经网络训练的工作原理。

训练

首先,让我们复习一下训练神经网络通常是如何工作的。

bfc663bc48d2ccfd4662396b554de5f8.gif

训练神经网络时,每个循环有四个主要步骤:

  1. forward pass,其中输入由神经网络处理
  2. 通过将预测标签与真实标签进行比较来计算损失函数
  3. 完成backward pass,根据损失计算每个参数的梯度(使用反向传播)
  4. 使用梯度更新参数

对于大于1的batch sizes,我们可能希望对训练进行批归一化。

DataParallel

DataParallel帮助将训练分散到一台计算机上的多个GPU中。让我们详细介绍一下DataParallel的工作原理。当使用数据并行训练神经网络时,会发生以下几个步骤:

f9e727d26bc3efb36c7f47c7567b07a4.png
  1. mini-batch在GPU:0上拆分
  2. 拆分mini-batch并将其移至所有不同的G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值