自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(51)
  • 资源 (1)
  • 收藏
  • 关注

原创 YoloV5 + deepsort + Fast-ReID 完整行人重识别系统(三)

Fast-Reid系列文章目录文章目录Fast-Reid系列文章目录前言一、yolov5 + deepsort2.行人计数二、Reid提取特征总结前言使用Fast-Reid框架训练了自己应用场景下的模型,训练策越为融合了大量开源reid数据集在加上自己的数据一起训练总共30W+的数据。一、yolov5 + deepsort使用yolov5实现行人检测,deepsort进行跟踪,在遮挡的情况下能较好的防止reid模型误识别。本人将yolov5、deepsort分别封装成了类,很容易嵌入到自己的

2021-01-30 13:17:39 51173 181

原创 基于RetinaFace魔改加二维码检测分支

前言基于RetinaFace训练一个即检测人脸又检测二维码的算法,人脸包含5 landmark对齐。一、多任务学习多任务学习:把多个相关(related)的任务放在一起学习,同时学习多个任务。如即检测人脸又回归关键点,即识别人脸属性又回归头部姿态,即做检测又做分类,这些都是多任务学习。backbone参数共享,模型head优化多个loss函数。二、算法需求1.一个模型既能检测人脸框,人脸关键点,还能检测二维码定位Retinaface本身就是一个很好的人脸检测算法,并且回归关键点,那么再加上一个二

2020-09-20 15:42:37 1257 6

原创 基于FairMOT训练的多人脸跟踪(Multi-face tracking)速度和精度都非常好

基于FairMOT训练的多人脸跟踪(Multi-face tracking)速度和精度都非常好1.前言最近研究了一下目标跟踪算法,如deepsort,CenterTrack,JDE,FairMOT等,FairMOT是目前单类多目标SOTA算法,并且是one-shot MOT框架,可以根据自己需求修改为多类多目标跟踪,于是突发奇想基于此修改一个人脸跟踪算法。此博客记录本人开发人脸跟踪的全过程,包括数据准备,模型修改,训练调参fine-tuning,模型转换onnx,部署等2.准备工作CenterNet

2020-09-20 14:37:13 7000 32

原创 无监督算法目标识别-工业异常检测模型Padim+PatchCore的C++_libtorch实现

Padim, PatchCore

2024-09-30 16:46:10 250

原创 自适应图像色彩增强算法

自适应图像色彩增强算法

2024-09-23 11:22:10 489

原创 大图滑动窗口式切片识别

大图滑动窗口式切片识别

2024-07-20 20:34:14 215

原创 图像拼接opencv实现

::infoORB算法是一种结合了FAST和BRIEF的特征点提取和匹配算法,并且通过和使得其具有一定的旋转,尺度不变性common.hlen2。

2024-07-20 20:32:55 276

原创 基于边缘检测和HSV的图像识别算法

【代码】基于边缘检测和HSV的图像识别算法。

2024-07-20 20:32:24 229

原创 自适应图像色彩增强算法

ImageEnhance.h#pragma once#include <iostream>#include <io.h>#include <fstream>#include "opencv2/opencv.hpp"#include "opencv2/highgui/highgui.hpp"using namespace cv;using namespace std;#define Openmp_Threads1 2 //白平衡算法多线程数#def

2024-07-20 20:31:52 213

原创 体态识别开发记录

插件地址:https://github.com/Mikubill/sd-webui-controlnethttps://github.com/nonnonstop/sd-webui-3d-open-pose-editorhttps://github.com/fkunn1326/openpose-editorhttps://github.com/Bing-su/adetailer。

2024-07-20 20:31:19 173

原创 风格迁移开发记录(DCT-Net)

【代码】风格迁移开发记录(DCT-Net)

2024-07-20 20:30:48 426

原创 ppTSM(Paddle temporal-shift-module)训练部署记录

视频分类与图像分类相似,均属于识别任务,对于给定的输入视频,视频分类模型需要输出其预测的标签类别。如果标签都是行为类别,则该任务也常被称为行为识别。与图像分类不同的是,视频分类往往需要利用多帧图像之间的时序信息。PP-TSM是PaddleVideo自研的实用产业级视频分类模型,在实现前沿算法的基础上,考虑精度和速度的平衡,进行模型瘦身和精度优化,使其可能满足产业落地需求。py, onnx_infer.py, C++输出结果.

2023-03-26 18:02:45 1431 2

原创 记录图像处理算法中运行效率优化的一些事20221016

记录图像处理中效率优化的一些过程图像处理过程的简单记录。

2022-10-17 20:40:30 1009 1

原创 详细记录python调用动态链接库.dll和.so的使用方法

图像处理系列文章目录文章目录图像处理系列文章目录前言一、window系统 DLL编译二、编写代码三、Linux系统 so编译四、python调用动态链接库五、后处理动态链接库buffer转图像的时间比较总结前言图像处理算法C++写好编译成动态链接库**.dll 或.so**使用python调用动态链接库进行逻辑处理,Opencv Mat 输入给动态链接库到输出Mat给python处理的时间效率比较一、window系统 DLL编译打开Visual Studio新建 DLL项目 或者 空项目,如果

2022-10-13 22:31:08 2176

原创 Windows10 配置编译OpenCV + NCNN部署环境(一)

记录Windows10 系统配置OpenCV + NCNN部署环境的过程,以下为详细记录OpenCV和NCNN的编译流程`下一篇OpenCV + NCNN调用实例。

2022-10-08 20:15:33 1965

原创 基于深度学习实现人脸检测,人脸姿态,眼嘴关键点,口罩等人脸属性识别

开发部署在嵌入式开发板上的人脸相关算法详细实现代码在本人github。

2022-10-08 20:14:46 469 1

原创 基于YoloV5 multi task网络增加分类分支

YoloV5做目标检测任务,但是当我们需要对图像中的目标进行检测,还需要根据图像整体对该图像做分类时,我们可以在Yolo-Detect检测头前加一个分类分支,这样可以在共享Backbone情况下实现做检测任务,又做分类任务,下面具体介绍增加分类分支的操作方法简单记录一下,因为yolo版本也在不断更新,说一没有详细说明,简单对主要修改处标记了,如有类似修改需求。大致参照思路即可。不能全抄。

2022-09-14 16:24:25 4188 7

原创 基于图像算法的透明容器液面液位识别算法

系列文章目录前言图像处理算法记录此算法是本人基于论文Computer vision-based recognition of liquid surfaces and phase boundaries in transparent vessels, with emphasis on chemistry applications的C++代码复现一、透明容器视图二、算法实现以下图为例,首先根据需要识别的图片获取**容器边界掩码,**可以选用传统分割算法或者深度学习算法获取。1.2.3.使用

2022-09-01 23:03:54 1873 10

原创 图像分类标注小工具--快速,简单,高效

深度学习分类算法图像数据分类小工具文章目录深度学习分类算法图像数据分类小工具前言一、小工具使用方法二、实现代码总结前言做分类算法数据标注时如果利用labelme等工具来分类图片的话效率太低,不好使用。于是写了个小工具对图片进行分类给标注人员使用,支持任意类别数。提示:以下是本篇文章正文内容,下面案例可供参考一、小工具使用方法以下使用例子4类为例写好python代码使用一下命令编译生成Classification_Tools.exepyinstaller -F Classification

2022-05-08 20:28:38 5089 1

原创 Windows 10 配置OpenCV + ncnn进行算法部署20220402(二)

文章目录前言一、安装ncnn二、配置属性二、使用ncnn算法模型推理总结前言本地平台:Windows 10、VS2015OpenCV:3.XNCNN:windows可以github直接下载编译好的opencv,然后安装protobuf、vulkan(可选)、ncnn一、安装ncnn简单说下安装流程,详细操作网上搜下很多这方面的文档1.先安装protobuf2.安装vulkan3.安装ncnn (一定要下载ncnn-full版本)二、配置属性如下图选择相应的路径即可然

2022-04-04 20:16:11 713

原创 Linux OpenCV交叉编译20220322

嵌入式开发板开发记录文章目录嵌入式开发板开发记录前言一、编译前准备1.安装Cmake2.安装交叉编译工具二、cmake-gui配置1.编译工具选择1.编译配置生成三、开始编译1.make2.报错解决总结前言OpenCV交叉编译记录,正常在开发板上直接编译也是可以的,但是开发板很容易会nospace,编译速度也不快,所以选择交叉编译。本地平台:Ubuntu18.04目标平台:飞凌嵌入式OpenCV版本:3.X一、编译前准备1.安装Cmakesudo apt-get install cmak

2022-04-04 19:56:48 1019

原创 基于人体姿态识别算法的行人抬手分析

文章目录前言一、软件操作图二、使用步骤2.输出人体关键点2.角度计算3.相似度分析总结前言使用人体姿态识别算法检测出人体上半身关键点,根据关键点连线的关系判断出行人抬手的动作,并对两个行人抬手动作进行抬手相似度分析。一、软件操作图1.加载视频进行抬手动作分析,输出抬手角度,抬手动作时间。2.横坐标为帧数,纵坐标为抬手角度,抬手角度一阶导数、抬手角度二阶导数,作图。3.使用动态规划进行曲线相似度分析。二、使用步骤2.输出人体关键点kp_points, kp_scores, boxes =

2022-01-20 22:20:00 2952 1

原创 人脸识别设计记录(之前写的记录一下)

目 录第一章 综合设计的进展情况 11.1 需求分析与建模 11.2 复杂工程问题归纳 11.3 实施方案与可行性研究 1第二章 存在问题与解决方案 22.1 存在的主要问题 22.2 解决方案 2第三章 前期任务完成度与后续实施计划 3参考文献 4第一章综合设计的进展情况需求分析、概要设计、详细设计能梳理出来就可以1.1 需求分析与建模1.1.1人脸识别技术简介:科技的进步和经济的发展带来了整个社会生活水平的提高,但同时,各种危害到社会安定和人民的生命财产安

2022-01-05 22:05:29 1032 1

原创 基于深度学习目标检测的人工智能玩游戏

人工智能玩游戏

2022-01-05 21:46:30 6083

原创 基于YCgCr空间的肤色分割 + Dlib关键点检测 + 基于NMEAR的疲劳检测实现

前言基于YCgCr空间的肤色分割 + Dlib关键点检测 + 基于NMEAR的疲劳检测实现一、实现原理和流程图二、安装1.安装opencv: pip install opencv-python2.安装dlib: pip install dlib-19.7.0-cp36-cp36m-win_amd64.whl3.报缺少什么就pip安装什么库三、基于YCgCr空间的肤色分割@jit(nopython=True) # jit实现for循环的加速def for_ij2(imag

2022-01-05 21:21:25 2684

原创 目标检测网络中大框包含小框的问题,非极大值抑制算法(Non-Maximum Suppression,NMS)优化

目标检测系列文章前言NMS一直是Object Detection很难绕开的步骤,本人的目标检测网络中遇到一个目标检测输出大框包含小框的问题如下图,(大概率是数据没搞好,但是数据多很难查出是哪写数据)。于是对nms做了一个修改。此方法可直接加在任何目标检测网络原版nms后面这种情况下原版nms是无法过滤掉目标内的小框的。一、NMS介绍NMS 算法的大致过程:每轮选取置信度最大的 Bounding Box(简称 BBox,有时也会看到用 Pc,Possible Candidates 代替讲解的)

2021-08-29 23:32:45 2217 2

原创 目标检测任务超大图像的切图实现

超大图像切图实现

2021-04-17 20:57:46 15748 45

原创 目标检测图像分类算法的训练 tricks 记录

系列文章目录文章目录系列文章目录前言一、模型选的选择1. Baseline的选择2. BackBone3.Neck4. Head5. Loss二、数据增强三、训练测试策略1,模型训练2、模型测试总结前言对图像算法的一些个人纪录,如果出现一些不是很明白的部分可以进行关键字搜索,网上有相应的讲解。推荐几个最新的文章:目标检测比赛中的tricks, 目标检测类算法比赛的经验总结, 提升小目标检测的思路。一、模型选的选择1. Baseline的选择MMdetection,Yolo系列,Anchor

2021-02-02 20:36:56 1584 1

原创 基于FaceX-Zoo实现的Face Mask Adding人脸戴口罩

人脸系列文章目录文章目录人脸系列文章目录前言一、加口罩效果二、实现原理二、代码实现前言目前人脸加口罩均为在人脸位置贴图式的,非常不真实。前段时间京东开源一个基于PRnet实现的3D口罩拟合人脸,加口罩非常逼真,但是只是单独一个加口罩demo,没有完整的流程。于是本人结合人脸检测,关键点对齐。PRnet加口罩实现一个完整的加口罩流程。只需一个命令简单方便调用,实现人脸加口罩。https://github.com/JDAI-CV/FaceX-Zoo一、加口罩效果下图可以看出效果还是非常逼真的

2021-01-30 11:18:38 3053 8

原创 一个有效的小目标检测的数据增强方法Mixup及其变体填鸭式

系列文章目录文章目录系列文章目录前言一、增强效果二、方法讲解1. 原图数据2. 截取目标roi3. 运行demo.py前言我们知道目标检测数据集中数据和标签需要一一对应,一旦对图像数据做了增强处理后(目标bbox发生改变),标签也需要做相应的修改。比较work的数据增强方法:MosaicMixUpResizeLetterBoxRandomCropRandomFlipRandomHSVRandomBlurRandomNoiseRandomAffineRandomTransla

2021-01-23 21:16:04 8352 20

原创 【网络理解】RepVGG: Making VGG-style ConvNets Great Again

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、Netron模型可视化二、代码实现总结前言本文主要是对RepVGG的讲解论文:https://arxiv.org/pdf/2101.03697.pdfGitHub:https://github.com/DingXiaoH/RepVGG参考博客一、Netron模型

2021-01-15 18:12:08 2039

原创 半自动的行人重识别数据标注算法Tracking + infomap

Fast-ReID系列文章目录文章目录Fast-ReID系列文章目录前言一、行人截取二、行人聚类聚类优化前言本人做行人重识别工程的数据准备过程。借鉴人脸的数据聚类清洗方法实现半自动行人重识别数据标注。一、行人截取使用行人跟踪算法,讲视频中行人截取出来: 使用yolov5 + deepsort 实现行人跟踪参考此方法Yolov5_DeepSort GitHub,并稍作修改以过滤掉不完整和太小的行人1. 限制检测到行人的长宽比例和大小w = x2 - x1h = y2 - y1person

2021-01-07 11:12:27 3289 6

原创 CNN网络设计

系列文章目录文章目录系列文章目录前言一、CNN基本概念二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、CNN基本概念感受野指的是卷积神经网络每一层输出的特征图(feature map)上每个像素点映射回输入图像上的区域大小,神经元感受野的范围越大表示其能接触到的原始图像范围就越大,也意味

2021-01-05 16:29:46 2188 1

原创 SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness

Face系列文章目录文章目录Face系列文章目录前言Abstract1. INTRODUCTION2. Related work3. Our approach3.1. Sample-quality estimation3.2. Properties4. Experimental setup总结前言Paperguthub提出的无监督人脸质量评估概念的可视化。我们建议使用图像表示的鲁棒性作为质量线索。我们的方法定义了这种鲁棒性基于嵌入变化的随机子网络的一个给定的人脸识别模型。在随机嵌入中产生微小变

2020-12-19 17:19:20 1913 1

原创 TinaFace: Strong but Simple Baseline for Face Detection论文笔记

Face系列文章目录文章目录Face系列文章目录前言一、Abstract1.Introduction2.Related Work3. TinaFace3.1. Deformable Convolution Networks3.2. Inception Module3.3. IoU-aware Branch3.4. Distance-IoU Loss4. Experiments4.1. Dataset4.2. Implementation Details4.3. Evaluation on WIDER FA

2020-12-15 16:21:24 1622 1

原创 firefly RK3399pro 更新 rknn 三件套 & 编译OpenCV !!!

系列文章目录文章目录系列文章目录前言一、RKNN 三件套介绍二、更新 DRV1.查看当前 DRV 版本(1.3.1):三、更新 rknn-toolkit1.百度云盘拉去 rknn-toolkit-1.4.0.7z 包并且解压2.安装 python3.53. virtualenv管理python版本四、更新 API前言本人使用的为firefly官方的RK3399PRO开发板一、RKNN 三件套介绍1、rknn-toolkit ->

2020-12-09 18:51:30 5520 6

原创 自训练的人脸带口罩判断算法

人脸系列文章目录文章目录人脸系列文章目录前言一、准备数据集二、模型搭建1.数据处理2.模型选择3.loss func 和 lr scheduler4.pytorch使用fp16训练5.训练调参5.推理demo总结前言使用widerface(带关键点)+一部分戴口罩人脸训练的人脸检测模型,可以很好的泛化检测出戴口罩的人脸。但无法判断出检测出的人脸是否戴口罩。目前开源的大部分是一种二类目标检测算法FaceMaskDetection来进行口罩判断判断,但此类算法一般要么不够轻量,要么人脸检测性能比较低。漏检

2020-12-05 11:58:18 3454 1

原创 RK3399(Aarch64架构)上使用anaconda进行Python环境管理

文章目录前言一、安装aarch64架构的conda whl包二、安装rknn-toolkit前言aarch64架构开发板使用conda进行Python包管理一、安装aarch64架构的conda whl包下载Archicondabash Archiconda3-0.2.3-Linux-aarch64.sh验证是否安装成功,看到可以创建环境二、安装rknn-toolkit写个shell脚本替换pip源#!bin/bashmkdir ~/.piptouch ~/.pip/pip.con

2020-11-14 12:58:11 2074

原创 Fast-ReID 训练自己的数据集调优记录(二)

数据集准备文章目录数据集准备前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filte

2020-11-02 10:07:36 15300 16

原创 SpCL阅读笔记:Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

行人重识别(ReID)系列文章目录Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID目录行人重识别(ReID)系列文章目录前言一、Abstract二、IntroductionRelated WorksMethodology构建和更新混合记忆用于对比学习统一的对比学习前言论文链接github源码OpenUnReID本人对行人重识别的记录,在针对对象re-ID(包括人员re-ID和车辆

2020-10-29 11:00:26 1893

9-1 深度学习框架.pdf

深度学习框架,cnn、TensorFlow、一个用于快速构建深度学习原型的高级库,可以用Tensorflow 和Theano 的backend,优点是高度的模块化、神经网络· softmax sigmoid、tanh 等将一个real value 映射到(0,1)的区间(也可以是(-1,1)),这样可以用来做二分类。 当遇到多分类问题时,我们可以使用softmax 函数,假设有一个数组Z,Zj表示Z中的第j个元素,那么这个 元素的Softmax值就是: 它的优点是定义符合要求,计算十分方便 Softmax 回归vs. 多个二元分类器 当类别数k = 2 时,softmax 回归退化为logistic 回归。这表明softmax 回归是logistic 回归的一般形式。当所 分的类别互斥时,更适于选择softmax 回归分类器,当不互斥时,建立多个独立的logistic回归分类器更加合适。 在神经网络的计算当中,经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注

2019-07-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除