用C语言表示sinx幂级数,e^iθ=cosθ+isinθ对于任意的实数θ都是成立的,其证明过程可以利用e^x,sinx和cosx的麦克劳林级数和i^2=-1,但是我从书上看到e^iZ=cosZ+is...

博客探讨了复数域中指数函数e^z的定义,通过两种不同的方式——欧拉公式和幂级数展开——证明了它们的等价性。欧拉公式e^z=cosz+isinz被提出,并基于此定义了复数域的三角函数。同时,解释了复数乘法的模和辐角性质,并展示了复数乘法如何保持模的不变性。最后,提到了复数三角函数在失去有界性后的欧拉公式依然成立。
摘要由CSDN通过智能技术生成

7d14a2b81882cfe4494b096a84150b2a.png 优质解答

实际上在定义 e^(x+iy) 的值具体是多少之前,讨论它是没意义的

而 e^(x+iy)=e^xcosy+ie^xsiny 正可以作为单变量的复变函数 f(z)=e^z 在 z=x+iy 处的定义

所以从这点来看欧拉公式是不需要证明的,你看到的证明是怎么回事呢?

是因为有些时候我们用另一种定义去定义 f(z)=e^z 的值,

那就是用幂级数 f(z)=e^z=1+z+z^2/2+...+z^n/n!+...来定义,

而那个证明就是证明了这两种定义之间的等价性

现在我们有了复指数函数的定义(而且是出自两种不同的方式,却相互和谐的定义)

但是对三角函数,我们还只能处理实变量的情况,现在我们要继续推广出复变量的三角函数.

因为我们希望复变量三角函数仍然满足欧拉公式 e^z=cosz+isinz

同时注意到 e^(-z)=cos(-z)+isin(-z)=cosz-isinz

所以我们就"顺水推舟地"定义 Cosz=(e^z+e^(-z))/2

类似的,定义 Sinz=(e^z-e^(-z))/2i,Tanz=Sinz/Cosz

这样定义出来的复变量的三角函数当然也符合欧拉公式了,不过此时的正余弦函数失去了“有界性”,即对任意的复数w,不能总保证 Sinw 或者 Cosw 的模不大于1

这样欧拉公式 e^z=Cosz+iSinz 就对任意的复数z都成立了.

复数乘法的意义体现在复数的模与辐角上,这一点写成三角形式特别容易证明

z1=r1(cosa+isina)

z2=r2(cosb+isinb)

利用简单的三角公式,很容易证明 z1z2 的模就是 r1r2 ,而辐角就是两个复数各自辅角的和 a+b

也即 z1z2=r1r2(cos(a+b)+isin(a+b))

注意模在复数乘法中的不变性是比较重要的一个性质,尽管写成三角形式它很显然,而它的另一面就是一个比较著名的恒等式:

z1=a+bi

z2=c+di

同样利用乘积的模等于模的乘积,有 (a^2+b^2)(c^2+d^2)=(ac-bd)^2+(bc+ad)^2

该恒等式能反映出的一个事实是,两个形如 x^2+y^2 的数的乘积,也能表示成类似的平方和,这在数论里有一定意义,详细可见 “费马平方和问题”.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值