偏差平方和说明什么_共同方法偏差检验之潜在误差变量控制法的Amos操作

在结构方程模型中,通过引入共同方法偏差潜变量来检验和控制共同方法偏差。当加入该潜变量后,模型的拟合度改善,如CFI和TLI提升、RMSEA和RMR降低超过特定阈值,表明存在显著的共同方法偏差。然而,具体案例分析显示,某些拟合指标如CFI和TLI降低,说明模型拟合并未显著改善,不存在显著的共同方法偏差。理解并正确解释卡方值、RMR、RMSEA等拟合指标对评估模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

潜在误差变量控制法是在结构方程模型中,将共同方法偏差作为一个潜变量加入模型,如果在包含方法偏差潜变量情况下模型的显著拟合度优于不包含共同方法偏差潜变量的情况,那么共同方法偏差效应就得到了检验,包含共同方法偏差潜在变量的模型,对于预测与效标变量关系的估计则控制了共同方法偏差。

具体操作如下:因为这个过程也是基于因子分析的基础上进行的,关于绘制模型以及运行等过程不再介绍,请参考前面关于“合成信度 ”的相关内容现在我们直接来比较两个模型:

没加入共同方法偏差的因子分析模型和加入共同方法偏差为潜变量的模型。

加入共同方法偏差潜变量的模型,在设定模型时,要注意两点:

因为共同方法偏差对每个观察变量的影响是相同的,所以从共同方法偏差潜变量到观察变量的路径系数(图中椭圆形内是路径)是相同的,要设定为相同的字母;

其次,为正常拟合模型,要为共同方法偏差潜变量设置限定条件,我们设定共同方法偏差潜变量的方差为1(图中小方形内)。

67b10a411abbf16cda5edb191fcec83f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值