摘要:
在本文,我们首先回顾了量子计算的发展历史,阐述了核磁共振量子计算的原理.在叙述了利用有效纯态方法进行核磁共振量子计算之后,我们阐述了利用混合态进行核磁共振的量子计算的方法.首先是刘维尔量子计算方法,它是由Madi,Brushweiler,Ernst等人1998年提出的,在这一模式中,可以对搜索算法进行加速算法,Brushweiler提出了一个指数速度的搜索算法.我们在3个比特的量子计算机中实现了这一搜索算法.我们在这一模式中提出了一个只需要一次搜索即可找标记物的直接拿取算法,并且在7个比特的核磁共振的量子计算机中实现了这一直接拿取算法.本文提出了在一个核磁共振量子计算机,或者更一般地一个系统量子计算机中实现多个量子计算机的并行计算.我们着重对量子搜索算法和Shor的大数分解算法进行了并行实现.在并行量子计算中,一部分量子比特处在纯态,一部分量子比特处在混合态.如果所有的量子比特都处在纯态上,则就是有效纯态量子计算,如果所有的量子比特都处在混合态上,则就是刘维尔量子计算.在这两个极限中间,相当于2个到N/2个量子计算机的并行计算.量子搜索方法可以很有效地进行并行计算,而Shor算法则只能在小的范围内进行并行计算.
展开