matplotlib中cmap_cmap到Matplotlib中的rgba

通过调用值上的matplotlib.cm中的对象,可以将标量值映射到colormap。值应介于0和1之间。因此,为了获得一些卡方分布数据的RBGA值(我将随机生成),我将:chisq = np.random.chisquare(4, 8)

chisq -= chisq.min()

chisq /= chisq.max()

errorbar_colors = cm.winter(chisq)

您可以减去最小值,然后除以所需的最大值,而不是让色阶以最小值和最大值开始和结束。在

现在errorbar_colors将是winter颜色映射中RGBA值的(8, 4)数组:

^{pr2}$

要绘制此图,只需迭代颜色和数据点并绘制错误条:heights = np.random.randn(8)

sem = .4

for i, (height, color) in enumerate(zip(heights, errorbar_colors)):

plt.plot([i, i], [height - sem, height + sem], c=color, lw=3)

plt.plot(heights, marker="o", ms=12, color=".3")

但是,没有一个内置的matplotlib颜色映射完全适合这个任务。为了进行一些改进,您可以使用seaborn生成一个可用于为线条着色的连续调色板:import numpy as np

import seaborn

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

chisq = np.random.chisquare(4, 8)

chisq -= chisq.min()

chisq /= chisq.max()

cmap = ListedColormap(seaborn.color_palette("GnBu_d"))

errorbar_colors = cmap(chisq)

heights = np.random.randn(8)

sem = .4

for i, (height, color) in enumerate(zip(heights, errorbar_colors)):

plt.plot([i, i], [height - sem, height + sem], c=color, lw=3)

plt.plot(heights, marker="o", ms=12, color=".3")

但即使在这里,我也怀疑这是否是最好的方式来表达你的观点。我不知道你的数据到底是什么样的,但我建议做两个图,一个是你在这里绘制的因变量,另一个是以卡方统计作为因变量。或者,如果您对误差条的大小和卡方值之间的关系感兴趣,我会直接用散点图来绘制。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值