通过调用值上的matplotlib.cm中的对象,可以将标量值映射到colormap。值应介于0和1之间。因此,为了获得一些卡方分布数据的RBGA值(我将随机生成),我将:chisq = np.random.chisquare(4, 8)
chisq -= chisq.min()
chisq /= chisq.max()
errorbar_colors = cm.winter(chisq)
您可以减去最小值,然后除以所需的最大值,而不是让色阶以最小值和最大值开始和结束。在
现在errorbar_colors将是winter颜色映射中RGBA值的(8, 4)数组:
^{pr2}$
要绘制此图,只需迭代颜色和数据点并绘制错误条:heights = np.random.randn(8)
sem = .4
for i, (height, color) in enumerate(zip(heights, errorbar_colors)):
plt.plot([i, i], [height - sem, height + sem], c=color, lw=3)
plt.plot(heights, marker="o", ms=12, color=".3")
但是,没有一个内置的matplotlib颜色映射完全适合这个任务。为了进行一些改进,您可以使用seaborn生成一个可用于为线条着色的连续调色板:import numpy as np
import seaborn
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
chisq = np.random.chisquare(4, 8)
chisq -= chisq.min()
chisq /= chisq.max()
cmap = ListedColormap(seaborn.color_palette("GnBu_d"))
errorbar_colors = cmap(chisq)
heights = np.random.randn(8)
sem = .4
for i, (height, color) in enumerate(zip(heights, errorbar_colors)):
plt.plot([i, i], [height - sem, height + sem], c=color, lw=3)
plt.plot(heights, marker="o", ms=12, color=".3")
但即使在这里,我也怀疑这是否是最好的方式来表达你的观点。我不知道你的数据到底是什么样的,但我建议做两个图,一个是你在这里绘制的因变量,另一个是以卡方统计作为因变量。或者,如果您对误差条的大小和卡方值之间的关系感兴趣,我会直接用散点图来绘制。在