AI辅助下的未来医疗:机遇还是风险?

AI辅助下的未来医疗:机遇还是风险?

背景简介

随着人工智能技术的飞速发展,大型语言模型(LLMs)正成为各行各业变革的驱动力。本书第19章深入探讨了这些模型在专业领域中的应用与误用,特别是医疗、法律和金融等高度受监管的行业中,它们正引发着一系列关于专业责任和伦理的新问题。本章内容不仅分析了LLMs在提升工作效率方面的潜力,也对可能带来的职业身份危机和责任问题提出了警示。

LLMs在医疗领域的应用与挑战

在医疗领域,LLMs的潜力尤为显著。医生和其他医疗专业人员常常面临着大量的非患者面对面工作,如管理电子邮件、填写进度笔记和图表,以及与健康保险公司沟通等。这些任务占用了他们大量的时间,导致许多医生感到压力巨大、职业满意度下降。

LLMs可以减轻这一负担,例如,通过自动生成与保险公司的沟通信件或帮助医生准备与患者交流的脚本。达拉斯的风湿病学家Richard Stern博士就利用GPT-4成功争取到了患者对药物Anakinra的保险覆盖,从而每月为患者节省了1500美元的费用。

然而,LLMs在医疗领域的应用也存在争议。使用这些模型来编写更具同理心的患者沟通脚本,可能会引起部分医疗专业人士的不满。有专家警告,不应将LLMs提供的良好沟通方式与高质量的医疗建议混为一谈。此外,LLMs生成的内容可能包含错误信息,这可能会对患者造成严重后果。

法律与金融领域的实践与道德考量

在法律领域,LLMs同样显示出提高工作效率的潜力。例如,它们可以帮助律师快速发现解决问题的替代方法、编写测试以及探索新的API,而无需进行繁琐的互联网搜索。然而,这也带来了责任归属的问题。如果LLMs提供的建议出现错误,责任将由谁承担?书中提到的律师Steven Schwartz使用ChatGPT提供虚假公证的案例就是一个警示。

在金融领域,LLMs可以提供基本的财务建议,并能够根据用户的特定情况个性化建议。但它们在处理技术性问题时可能会超出知识范围,从而做出错误的猜测。因此,专业人员不能完全依赖这些工具,而应结合自己的专业知识或研究技能来核实信息的真实性。

责任归属与未来的展望

在LLMs的使用中,责任的归属是一个核心问题。用户需要了解这些工具的局限性,并在关键决策中负起责任。开发这些模型的公司也应负起责任,对模型的局限性保持透明,并提供适当的使用指导。

总之,LLMs在医疗、法律和金融等专业领域的应用具有极大的潜力,但同时也带来了一系列的挑战和责任问题。正确地使用这些工具,并在必要时进行监管和教育,将是确保它们带来积极变革的关键。

总结与启发

本章通过多个案例深入分析了LLMs在专业领域的应用和误用情况,强调了负责任使用这些工具的重要性。它提醒我们,尽管AI技术在提高效率和生产力方面有巨大潜力,但我们仍需谨慎对待,确保技术的使用符合道德标准,并保护用户的最佳利益。随着技术的不断进步,未来可能还需要更多的指导方针和法规来确保人工智能的安全和有效使用。

关键词

  • 大型语言模型
  • 医疗应用
  • 法律伦理
  • 教育误用
  • 经济影响
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值