计算机视觉在移动端的应用,移动端X计算机视觉

混乱的序&移动端的图像开发

一直以来都特别有分享的欲望,但有时候会担心自己的整理不够体系,或者讲解的不够准确,又害怕每次写到最后都变成了论文八股一样的风格,让读者丧失读的乐趣。总之每次打开编辑器,各种担心都会一涌而上,今天下定决心,先厚着脸皮开启第一章吧,聊聊移动端的开发,希望大家也能走出各种事情的第一步。这个系列是免费的,算是对自己的总结,也能让大家了解不同领域的知识。

什么是移动端的图像处理?计算机视觉?

抖音,快手中的各种滤镜,以及相机中的HDR合成,均是图像处理相关的应用,机器学习也在其中发挥了重要的作用,其实更准确的应当称为“计算机视觉”。

准备知识&学习路线&规划

如果有人问我,学计算机视觉有什么用,可能最大的用处就是能让我在喜欢的领域工作吧,如果更高尚点,那么计算机视觉应该是近年来机器学习应用最成熟的领域之一吧,你可以站在无数巨人的肩膀上,可以轻而易举的写出一些好玩的应用,也可以把这些应用做好,带给市场,让更多人受益。

其实计算机视觉没有“移动端”这个限定,移动端更多的是指算法适用性,如果你是入门者,我建议从以下两个方面入手:

基础的图像算法:比较有名的书例如冈萨雷斯的《数字图像处理》,可以让你对图像处理有基础的了解,可能这本书最终的归宿大多是垫显示器,建议大家在实践中学习,这似乎是个老生常谈的话题,书中的内容的确覆盖的较多,所以一章章看下去更多的像是在翻看一本牛津字典,书中的内容应该大多数是matlab代码编写(不清楚现在的版本是怎样的),如果你对python熟悉的话,也不错 。

在啰嗦几句,如果觉得看书麻烦的话,OpenCV也是特别好的学习材料,这里并不是指阅读源码,而是去运行OpenCV中的Sample,地址在这里:https://github.com/opencv/opencv/tree/master/samples/python

机器学习:机器学习似乎成了近年来大家都会的一项技术,我这里也不多说了,最近在看https://github.com/d2l-ai/d2l-zh 这本书,非常推荐,内容特别用心,无论熟悉或者不熟悉,看一遍应该也没有坏处的。

移动端:这里更多的是工程向的技能点,例如移动端对实时性的要求比较高,可能在Android就要学会NDK开发,比如处理后需要和渲染结合,那可能就需要了解OpenGL/Metal相关领域的知识,又比如需要处理视频相关的东西,那么你可能需要了解编解码的知识,或是移动端播放器相关的内容,这部分知识比较分散,但要求也比较高,后期我可能应该会分类写写。

其实这部分知识已经非常多了,但个人觉得如果目标不是为了做科研,发论文,入门起来不会特别难,学习新的知识也是我们这个行业必备的技能吧,如果在学习中有什么问题,可以留言,空闲时间我是很乐意解答的(也许有的我也不会。

关于专栏

其实本来开专栏我想分享下移动端渲染相关的内容,但转念一想,关于OpenGL,网上大多数的文章都从“如何渲染一个三角形”戛然而止,但渲染一个三角形除了制造一个无用的Demo外没有任何用处,但GL中的一些使用经验,以及图形学中各种有趣的算法,才是真正有意思的东西,想听听大家的意见,希望能够从一个实例讲起,或者分享一些实际的使用经验,或者是与大家探讨程序的优化方式。

关于Metal, Metal作为新一代的图形接口,是非常容易入门的,在初次学习时,这里我不建议大家去看任何文章,去看看Apple developer上的Metal入门足够了,并且提供了非常多的Demo,这些内容我认为对于入门者足够了,地址如下:https://developer.apple.com/metal/index.html 当然这个文章也不是没有缺点的,就是跳变太大,前一篇在渲染三角形,下一篇就开始渲染环境光了

关于我

写到这里我突然发现我忘记提到GPUImage,这个框架也应该是大多数做过滤镜相关应用同学都使用或参考过的,值得学习,虽然有很多的缺点,但也无法掩盖她的经典(非常喜欢作者

后续

知道我这篇鼓起勇气写下的文章会不会淹没在网站中,如果你恰好看到了,希望能留言写想要了解内容的,如果我恰好了解,我会再下篇文章分享的。最后,这个系列的文章没打算收费,仅分享我的一些破碎的知识,比较喜欢小专栏的排布,希望大家能够订阅,给我力量,当然如果不能订阅,留言批评下我也是极好的。

2019/11/03

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值