python多进程通信manager_python中进程间数据通讯模块multiprocessing.Manager的介绍

本文介绍了Python的multiprocessing.Manager模块,用于实现进程间数据通讯。通过示例展示了如何创建和使用Manager对象,特别是针对dict类型的共享,并通过源码分析解释了Manager的工作原理和潜在问题。最后,通过引入Lock对象来确保数据的安全性。
摘要由CSDN通过智能技术生成

本篇文章给大家带来的内容是关于python中进程间数据通讯模块multiprocessing.Manager的介绍,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

目前开发中有遇到进程间需要共享数据的情况. 所以研究了下multiprocessing.Manager, 主要会以dict为例子, 说明下进程间共享(同一个父进程).

dict使用说明import multiprocessing

# 1. 创建一个Manger对象

manager = multiprocessing.Manager()

# 2. 创建一个dict

temp_dict = manager.dict()

# 3. 创建一个测试程序

def test(idx, test_dict):

test_dict[idx] = idx

# 4. 创建进程池进行测试

pool = multiprocessing.Pool(4)

for i in range(100):

pool.apply_async(test, args=(i, temp_dict))

pool.close()

pool.join()

print(temp_dict)

too simple.

简单的源码分析

这时我们再看一个例子import multiprocessing

# 1. 创建一个Manger对象

manager = multiprocessing.Manager()

# 2. 创建一个dict

temp_dict = manager.dict()

temp_dict['test'] = {}

# 3. 创建一个测试程序

def test(idx, test_dict):

test_dict['test'][idx] = idx

# 4. 创建进程池进行测试

pool = multiprocessing.Pool(4)

for i in range(100):

pool.apply_async(test, args=(i, temp_dict))

pool.close()

pool.join()

print(temp_dict)

可以看到输出结果是奇怪的{'test': {}}

如果我们简单修改一下代码import multiprocessing

# 1. 创建一个Manger对象

manager = multiprocessing.Manager()

# 2. 创建一个dict

temp_dict = manager.dict()

temp_dict['test'] = {}

# 3. 创建一个测试程序

def test(idx, test_dict):

row = test_dict['test']

row[idx] = idx

test_dict['test'] = row

# 4. 创建进程池进行测试

pool = multiprocessing.Pool(4)

for i in range(100):

pool.apply_async(test, args=(i, temp_dict))

pool.close()

pool.join()

print(temp_dict)

这时输出结果就符合预期了.

为了了解这个现象背后的原因, 我简单去读了一下源码, 主要有以下几段代码很关键.def Manager():

'''

Returns a manager associated with a running server process

The managers methods such as `Lock()`, `Condition()` and `Queue()`

can be used to create shared objects.

'''

from multiprocessing.managers import SyncManager

m = SyncManager()

m.start()

return m

...

def start(self, initializer=None, initargs=()):

'''

Spawn a server process for this manager object

'''

assert self._state.value == State.INITIAL

if initializer is not None and not hasattr(initializer, '__call__'):

raise TypeError('initializer must be a callable')

# pipe over which we will retrieve address of server

reader, writer = connection.Pipe(duplex=False)

# spawn process which runs a server

self._process = Process(

target=type(self)._run_server,

args=(self._registry, self._address, self._authkey,

self._serializer, writer, initializer, initargs),

)

ident = ':'.join(str(i) for i in self._process._identity)

self._process.name = type(self).__name__ + '-' + ident

self._process.start()

...

上面代码可以看出, 当我们声明了一个Manager对象的时候, 程序实际在其他进程启动了一个server服务, 这个server是阻塞的, 以此来实现进程间数据安全.

我的理解就是不同进程之间操作都是互斥的, 一个进程向server请求到这部分数据, 再把这部分数据修改, 返回给server, 之后server再去处理其他进程的请求.

回到上面的奇怪现象上, 这个操作test_dict['test'][idx] = idx实际上在拉取到server上的数据后进行了修改, 但并没有返回给server, 所以temp_dict的数据根本没有变化. 在第二段正常代码, 就相当于先向服务器请求数据, 再向服务器传送修改后的数据. 这样就可以解释这个现象了.

进程间数据安全

这个时候如果出现一种情况, 两个进程同时请求了一份相同的数据, 分别进行修改, 再提交到server上会怎么样呢? 那当然是数据产生异常. 基于此, 我们需要Manager的另一个对象, Lock(). 这个对象也不难理解, Manager本身就是一个server, dict跟lock都来自于这个server, 所以当你lock住的时候, 其他进程是不能取到数据, 自然也不会出现上面那种异常情况.

代码示例:import multiprocessing

# 1. 创建一个Manger对象

manager = multiprocessing.Manager()

# 2. 创建一个dict

temp_dict = manager.dict()

lock = manager.Lock()

temp_dict['test'] = {}

# 3. 创建一个测试程序

def test(idx, test_dict, lock):

lock.acquire()

row = test_dict['test']

row[idx] = idx

test_dict['test'] = row

lock.release()

# 4. 创建进程池进行测试

pool = multiprocessing.Pool(4)

for i in range(100):

pool.apply_async(test, args=(i, temp_dict, lock))

pool.close()

pool.join()

print(temp_dict)

切忌不要进程里自己新建lock对象, 要使用统一的lock对象.

本篇文章到这里就已经全部结束了,更多其他精彩内容可以关注PHP中文网的python视频教程栏目!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值