小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
最容易想到的方法是dfs暴力枚举,但刚上手很容易写成这样,即标记每种牌出现次数枚举所有情况可能的牌的出现情况:
错误的解法:
#include#include#include#include
using namespacestd;int used[14]={0},n=0,hand[14];void dfs(intnum){if(num==13){
n++;for(int i=1;i<=13;i++)
printf("%d",hand[i]);
printf("\n%d\n",n);return;
}for(int i=1;i<=13;i++){if(used[i]<4){//如果出现次数少于4就可以添加这张牌到手里
used[i]++;
hand[num+1]=i;
dfs(num+1);
used[i]--;
}
}
}intmain(){
dfs(0);
printf("%d\n",n*13);return 0;
}
答案是3598180,我最开始用这种方法跑了大约1小时就超过了360w(⊙﹏⊙)b
这种解法是错误的,题目中要求不考虑顺序,这样做实际上把1 1 1 1 2 2 2 2 3 3 3 3 4 和 1 1 1 1 2 2 2 2 3 3 3 4 3 当成两种情况了!所以枚举时间也大大增加了!同时也是错误的!
后来想到另一种方法:直接枚举牌的出现次数,每种牌出现次数取值为0到4 当13种牌出现次数的和为13时情况加1,这样就规避了顺序问题,不管哪种顺序出现次数都是一样的O(∩_∩)O~~代码如下
1 #include
2 #include
3 #include
4 #include
5 using namespacestd;6
7 int used[15]={0};8 long long n=0;9
10 void dfs(int step,intnum){11 if(num>13)return;//简单的剪枝,提前发现大于13直接return;没有这个剪枝大概跑十几分钟,有的话秒出12 if(step==14){13 if(num==13)14 n++;15 return;16 }17 for(int i=0;i<=4;i++){18 num+=i;19 dfs(step+1,num);20 num-=i;21 }22 }23
24 intmain(){25 dfs(1,0);26 printf("%I64d\n",n);27 return 0;28 }
后一个代码答案是正确的,如有问题还请指出,不胜感激O(∩_∩)O~~