复旦java培训_Deep Learning

部署运行你感兴趣的模型镜像

Deep neural network-based NLP toolkit

Deep neural network-based system (FudanDNN-NLP4.2) for Chinese language processing (word segmentation, named identity recognition, POS tagging, semantic analysis, text classification, sentiment analysis, key word and phrase extraction, summarization, question answering, triple extraction and dialog systems) can be downloaded from (Online disk)

Fudan deep neural networks (FudanDNN-NLP4.1) for Chinese language processing (word segmentation, named identity recognition, POS tagging, semantic analysis, text classification, sentiment analysis, summarization and dialog systems) can be downloaded from (Online disk) (Manual)

Fudan deep neural networks (FudanDNN-NLP4.0) for Chinese language processing (word segmentation, named identity recognition, POS tagging, semantic analysis, and dialog systems) can be downloaded from (Online disk).

Fudan deep neural networks (FudanDNN-NLP3.0) for Chinese language processing (word segmentation, named identity recognition, POS tagging, semantic analysis, and dialog systems) can be downloaded from (Online disk).

Fudan deep neural networks (FudanDNN-NLP2.2) for Chinese language processing (word segmentation, named identity recognition, POS tagging, semantic analysis, and dialog) can be downloaded from (Online disk).

Fudan deep neural networks (FudanDNN-NLP2.1) for Chinese language processing (word segmentation, named identity recognition, POS tagging and semantic analysis) can be downloaded from (Online disk).

Fudan deep neural networks (FudanDNN-NLP2.0) for Chinese language processing (word segmentation, named identity recognition, POS tagging and semantic analysis) can be downloaded from (Online disk).

Fudan deep neural networks (FudanDNN-NLP1.0) for Chinese language processing (word segmentation, named identity recognition and POS tagging) can be downloaded from (Online disk).

If you have any problem or comment about the tools, please feel free to contact Xiaoqing Zheng by sending a mail to zhengxq@fudan.edu.cn.

基于深度学习的中文自然语言处理工具

复旦深度网络中文自然语言处理工具FudanDNN-NLP4.2(在FudanDNN-NLP4.1的基础上新增加自定义多种词类及词库,并可指定词类之间的优先级;常见问题检索(FAQ)可返回Top-k个回答;三元组抽取(实体属性和关系)功能;序列注标模型性能优化;修复发现错误)下载:(链接) (介绍)

复旦深度网络中文自然语言处理工具FudanDNN-NLP4.1(在4.0的基础上新增词典动态加载和加密; 依存句法分析; 文本分类、聚类、摘要、情感分析以及关键短语抽取;文本信息抽取和热点新闻发现;篇章级中文分词和词性标注的功能,一定程度上避免在一篇文章中相同实体在不同出现处识别不一致情况;优化了对话管理模块等功能;修复了已知的一些错误)下载:(网盘)

复旦深度网络中文自然语言处理工具FudanDNN-NLP4.0(在3.0的基础上新增上下文相关问答。分为两种情况:第一种情况处理类似上一句问“今天北京天气如何?”,然后追问“上海呢?”的情况;另一种情况是根据对话主题展开、转换和递进给出合适的回答;多轮对话。处理类似订购机票的场景。不同场景可以根据对话进展自由切换,并且期间可插入其他问答;海量自定义问答对的高效检索。检索匹配时考虑同义词替换,可根据发音相似性纠正可能的错误,并且支持一次提问包括多个问题的情况;可为每一位用户定义各自的上下文信息;图形客户端用于系统演示和调试,支持本地或服务器快速部署;问答过程中检测禁用词功能)下载:(网盘)

复旦深度网络中文自然语言处理工具FudanDNN-NLP3.0(在2.2的基础上新增融合任务导向问答和聊天机器人的对话系统;支持访问以RDF表示的知识库(类似知识图谱);可配置自定义问答的优先处理机制;针对语音识别不准确的发音相似性匹配功能(用于知识库检索和自定义问题的匹配);简单算术、诗词朗读、术语解读、菜谱查询、家电控制等场景;增加金融、疾病、药物、动物、植物、化学等专业词汇的识别。)下载:(网盘) (介绍)

复旦深度网络中文自然语言处理工具FudanDNN-NLP2.2(在2.1的基础上新增语音对话问答功能,可以用于智能助理、智能客服、问答机器人等应用开发。工具自带包括天气预报、互联网信息检索、出行路线查询等十个应用场景,并可在所提供的框架下方便地增加应用场景)下载:(网盘)

复旦深度网络中文自然语言处理工具FudanDNN-NLP2.1(在2.0的基础上新增双向LSTM的语义分析模型和带动态k-max池化卷积神经网络的句子分类模型、优化多事件语义分析性能、增加自定义词汇类型和时期描述短语识别、修复2.0版已知的错误)下载:(网盘)

复旦深度网络中文自然语言处理工具FudanDNN-NLP2.0(中文分词、自定义词典、命名识别、词性分析、语义分析、文本规范化)下载:(网盘)

复旦深度网络中文自然语言处理工具FudanDNN-NLP1.0(包括:中文分词、命名识别和词性分析)下载:(网盘)

注意:由于进行了整合优化,使用工具包FudanDNN-NLP中的相同功能较仅能够完成单独任务的程序包的准确度高。使用过程中如有任何问题或建议,请邮件zhengxq@fudan.edu.cn(郑骁庆)。

Reference / 参考文献

Xiaoqing Zheng, Hanyang Chen, Tianyu Xu. Deep learning for Chinese word Segmentation and POS tagging. In Proc. Conference on Empirical Methods on Natural Language Processing (EMNLP’13), October 18-21, 2013, pp. 647-657. (pdf)

Xiaoqing Zheng, Haoyuan Peng, Yi Chen, Pengjing Zhang, Wenqiang Zhang. Character-based parsing with convolutional neural network. In Proc. The Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI’15), 2015. (pdf)

Xiaoqing Zheng, Jiangtao Feng, Mengxiao Lin, Wenqiang Zhang. Context-specific and multi-prototype character representations. In Proc. The Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16), 2016. (pdf)

Xiaoqing Zheng, Jiangtao Feng, Yi Chen, Haoyuan Peng, Wenqiang Zhang. Learning context-specific word/character embeddings. In Proc. AAAI Conference on Artificial Intelligence (AAAI’17), 2017. (pdf)

Xiaoqing Zheng. Incremental graph-based neural dependency parsing. In Proc. Conference on Empirical Methods on Natural Language Processing (EMNLP’17), 2017. (pdf)

Haoyuan Peng, Lu Liu, Yi Zhou, Junying Zhou, Xiaoqing Zheng*. Attention-based belief or disbelief feature extraction for dependency parsing. In Proc. AAAI Conference on Artificial Intelligence (AAAI’18), 2018. (Corresponding author) (to appear)

Jiangtao Feng, Xiaoqing Zheng*. Geometric relationship between word and context representations. In Proc. AAAI Conference on Artificial Intelligence (AAAI’18), 2018. (Corresponding author) (to appear)

Yi Zhou, Junying Zhou, Lu Liu, Jiangtao Feng, Xiaoqing Zheng*. RNN-based sequence-preserved attention for dependency parsing. In Proc. AAAI Conference on Artificial Intelligence (AAAI’18), 2018. (Corresponding author) (to appear)

您可能感兴趣的与本文相关的镜像

Anything-LLM

Anything-LLM

AI应用

AnythingLLM是一个全栈应用程序,可以使用商用或开源的LLM/嵌入器/语义向量数据库模型,帮助用户在本地或云端搭建个性化的聊天机器人系统,且无需复杂设置

**项目名称:** 基于Vue.js与Spring Cloud架构的博客系统设计与开发——微服务分布式应用实践 **项目概述:** 本项目为计算机科学与技术专业本科毕业设计成果,旨在设计并实现一个采用前后端分离架构的现代化博客平台。系统前端基于Vue.js框架构建,提供响应式用户界面;后端采用Spring Cloud微服务架构,通过服务拆分、注册发现、配置中心及网关路由等技术,构建高可用、易扩展的分布式应用体系。项目重点探讨微服务模式下的系统设计、服务治理、数据一致性及部署运维等关键问题,体现了分布式系统在Web应用中的实践价值。 **技术架构:** 1. **前端技术栈:** Vue.js 2.x、Vue Router、Vuex、Element UI、Axios 2. **后端技术栈:** Spring Boot 2.x、Spring Cloud (Eureka/Nacos、Feign/OpenFeign、Ribbon、Hystrix、Zuul/Gateway、Config) 3. **数据存储:** MySQL 8.0(主数据存储)、Redis(缓存与会话管理) 4. **服务通信:** RESTful API、消息队列(可选RabbitMQ/Kafka) 5. **部署与运维:** Docker容器化、Jenkins持续集成、Nginx负载均衡 **核心功能模块:** - 用户管理:注册登录、权限控制、个人中心 - 文章管理:富文本编辑、分类标签、发布审核、评论互动 - 内容展示:首页推荐、分类检索、全文搜索、热门排行 - 系统管理:后台仪表盘、用户与内容监控、日志审计 - 微服务治理:服务健康检测、动态配置更新、熔断降级策略 **设计特点:** 1. **架构解耦:** 前后端完全分离,通过API网关统一接入,支持独立开发与部署。 2. **服务拆分:** 按业务域划分为用户服务、文章服务、评论服务、文件服务等独立微服务。 3. **高可用设计:** 采用服务注册发现机制,配合负载均衡与熔断器,提升系统容错能力。 4. **可扩展性:** 模块化设计支持横向扩展,配置中心实现运行时动态调整。 **项目成果:** 完成了一个具备完整博客功能、具备微服务典型特征的分布式系统原型,通过容器化部署验证了多服务协同运行的可行性,为云原生应用开发提供了实践参考。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值