RLC串联的交流电路
下图所示式$R$、$L$、$C$(电阻、电感、电容)三个元件串联的交流电路。电流、电压的参考方向已经标注在图中。
因串联电路中各元件流过同一电路,所以以电流作为参考量。设电流为$i=I_{m}sin\omega t $,则$R$、$L$、$C$各元件上的电压为:
$$ u_{R}=I\sqrt{2}sin\omega t $$
$$ u_{L}=I\sqrt{2}sin\left ( \omega t+90^{\circ} \right ) $$
$$ u_{C}=I\sqrt{2}sin\left ( \omega t-90^{\circ} \right ) $$
根据基尔霍夫定律可知,电路总电压与各元件上的电压代数和相等,即:
$$ u=u_{R}+u_{L}+u_{C} $$
显然,上式中的总电压u是与电流和各元件上电压频率相同的正弦量,可用下式表示:
$$ u=U\sqrt{2}sin\left ( \omega t+\varphi \right ) $$
在上式中只要求出总电压的有效值U和初相位角$\varphi$,则总电压和各元件的电压关系便可知。在此采用相量法分析更为方便。
首先将上图a画成用相量表示的电路图,如图b所示。图中各元件用相应的电阻、电抗、容抗表示,电流、电压用相量表示,则有:
$$ \dot{U}=\dot{U}_{R}+\dot{U}_{L}+\dot{U}_{C} $$
并以$ \dot{I} $为参考相量,做电路的相量图,如图C所示。图中三个元件电压对电流的相位关系分别是$ \dot{U}_{R} $与$ \dot{I} $同相,$ \dot{U}_{L} $超前$ \dot{I} $为90°,$ \dot{U}_{C} $则滞后$ \dot{I} $为90°。将三个元件的电压相量合成,便得到总电压相量$ \dot{U} $。
从相量图中可以得出,总电压有效值为:
$$ U=\sqrt{U_{R}^{2}+\left ( U_{L}-U_{C} \right )^{2}}=I\sqrt{R^{2}+\left ( X_{L}-X_{C} \right )^{2}} $