2013-2016年美国大学生数学建模竞赛特等奖论文集

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《数学建模美赛特等奖原版论文集》汇集了2013年至2016年期间在美国大学生数学建模竞赛(MCM/ICM)中荣获特等奖的论文。这些论文涵盖了从社会问题到科技领域的广泛主题,展示了数学建模在解决复杂问题中的实际应用。每篇论文都详细介绍了问题分析、模型建立、求解过程、结果讨论和模型局限性,为数学建模学习者和研究者提供了宝贵的学习资源和启发。 2013-2016年美赛特等奖原版论文集

1. 美国大学生数学建模竞赛特等奖论文概述

数学建模竞赛的重要性

美国大学生数学建模竞赛(MCM/ICM)是一项历史悠久且享有盛誉的国际性赛事。它不仅考验参赛者的数学知识和解决问题的能力,而且还强调团队合作与创新思维。特等奖论文代表了在该领域的最高水平,是分析、建模和问题解决能力的集大成之作。

竞赛论文的结构与特点

特等奖论文通常具备条理清晰的结构、严谨的逻辑推理以及高效的数据分析。论文中的模型构建往往需要综合运用多个学科的知识,从实际问题中抽象出数学结构,并且能够给出可行且创新的解决方案。论文的分析过程和结果展示,也对展示论文质量和研究深度至关重要。

对IT行业的启示

对于IT行业而言,数学建模竞赛不仅是培养数学思维和解决复杂问题能力的平台,同样也是促进技术创新和跨学科合作的绝佳机会。IT专业人士可以从特等奖论文中获取灵感,将其抽象的数学模型应用到具体的技术问题中,从而推动技术发展和行业创新。

2. 数学建模的实际应用案例研究

在当今这个科技日新月异的时代,数学建模已经渗透到社会的各个领域,成为理解复杂现象、预测未来发展和辅助决策的重要工具。本章节旨在深入探讨数学建模在不同应用案例中的具体运用,帮助读者更好地理解其实践价值和操作过程。

2.1 社会科学领域的应用案例

2.1.1 社会网络分析的模型应用

在社会科学领域,社会网络分析是一个重要的数学建模应用。社会网络是由社会实体(如个人、团体或国家)以及实体间的关系(如友谊、合作或通信)构成的复杂系统。数学模型可以帮助我们更好地理解网络的结构,预测网络中信息的传播路径,以及评估网络中的影响力分布。

以社交网络为例,我们可以用图论来构建网络模型,其中节点代表实体,边代表实体之间的关系。通过构建这样的模型,我们可以使用算法来寻找关键节点,这些节点往往在信息传播中起到至关重要的作用。例如,在预防疾病的传播中,找到并优先对这些节点进行疫苗接种,可以有效地遏制疫情的蔓延。

以下是使用Python进行社交网络分析的一个简单示例代码:

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个空的图对象
G = nx.Graph()

# 添加节点和边
G.add_nodes_from(['Alice', 'Bob', 'Cathy', 'Dave', 'Eve'])
G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Cathy'), ('Cathy', 'Dave'), ('Dave', 'Eve')])

# 绘制社交网络图
nx.draw(G, with_labels=True)
plt.show()

在上述代码中,我们首先导入了networkx库来处理图和网络分析,以及matplotlib库来绘图。代码创建了一个空的图 G ,然后添加了节点和边来模拟社交网络。最后,使用 draw 方法绘制出社交网络图。

2.1.2 消费行为预测与市场分析

消费者行为和市场分析是商业决策的重要依据。数学建模在这一领域的应用,可以协助企业准确把握市场趋势,优化产品和服务,从而制定更有效的营销策略。

在消费行为预测中,我们可以使用统计学中的回归分析模型来分析消费者行为与特定因素之间的关系,例如价格、广告投入和促销活动对销售量的影响。通过构建回归模型并分析数据,企业能够预测不同变量下产品的销售情况,进而做出相应的市场决策。

对于市场分析,我们可以运用聚类分析方法,将消费者分成不同的群体,每个群体内部的消费者在某些特征上具有相似性。这种分析有助于企业精准定位目标市场,针对性地设计营销策略。

以下是一个简单的线性回归分析示例,使用Python的statsmodels库来预测销售量:

import numpy as np
import statsmodels.api as sm

# 假设的市场数据
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 自变量(例如广告投入)
y = np.array([2, 1.5, 4, 3.5, 4.5]) # 因变量(例如销售量)

# 添加常数项以构建截距
X = sm.add_constant(X)

# 构建并拟合回归模型
model = sm.OLS(y, X).fit()

# 打印模型参数
print(model.params)

在这个例子中,我们首先导入numpy和statsmodels.api库。我们创建了一个包含广告投入和对应销售量的假设数据集。接着,为回归模型添加常数项来构建截距。然后,使用 OLS 方法构建并拟合线性回归模型。最后,我们打印出了模型参数,这些参数可以用来预测给定广告投入下的销售量。

通过对市场数据进行类似的分析和建模,企业能够更准确地把握消费者的购买行为和市场的动态,从而作出更加明智的商业决策。

在本章节中,我们探讨了数学建模在社会科学领域的应用案例,并通过代码示例进一步说明了其操作过程。在接下来的章节中,我们将继续探讨数学建模在工程技术领域和生命科学领域的应用案例。

3. 问题分析与数学模型构建

数学模型是数学建模的核心,它将实际问题转换为数学形式,以便于使用数学工具进行求解。构建数学模型的过程通常包括问题分析、模型的假设与简化、模型的验证与修正等关键步骤。在这一章中,我们将深入探讨如何进行有效的问题分析,以及如何构建和优化数学模型。

3.1 问题分析方法

在开始构建数学模型之前,首先需要对实际问题进行深入分析,明确问题的范围,并收集必要的数据。这一部分是模型构建的基础,也是整个建模过程中至关重要的一步。

3.1.1 理解与界定问题的范围

在面对一个实际问题时,需要首先明确问题的本质,确定建模的目标和预期的解决方向。这一步骤通常涉及到与领域专家的交流和资料的广泛查阅。例如,在进行市场分析时,首先要理解市场行为的驱动因素,包括价格、需求、竞争和市场趋势等。

  • 案例分析 :以一个简单的例子来说明。假设某公司希望提高其产品的市场份额,这就需要分析哪些因素会影响产品的市场接受度和销售量。可能的因素包括产品特性、价格、广告效果、销售渠道、用户满意度等。

3.1.2 数据收集与初步处理

收集数据是理解问题的第二步。数据需要能够代表问题的各个方面,并且足够详细和全面,以便于后续分析。在数据收集完成后,需要进行初步的处理,包括数据清洗、格式统一、缺失值处理等。

  • 数据清洗 :识别并处理数据中的异常值和不一致之处,例如,去除或修正错误的记录。
  • 数据格式统一 :确保不同来源的数据可以互相比较和整合。
  • 缺失值处理 :填补或删除缺失的数据点,常见的方法有插值、均值填充、模型预测等。

3.2 数学模型的构建

一旦问题的范围被界定,并且数据被收集和清洗,接下来就需要选择合适的数学工具和方法来构建模型。这包括建立假设条件,简化模型,以及模型的验证和修正。

3.2.1 选择合适的数学工具和方法

数学模型的种类繁多,包括确定性模型、随机模型、动态模型等。选择正确的模型工具和方法,通常需要专业知识和经验。以下是一些常用的方法:

  • 线性规划 :用于资源优化分配问题。
  • 排队理论 :处理服务系统中等待线的动态问题。
  • 概率论 :解决不确定性和随机性问题。
  • 微分方程 :描述系统随时间变化的动态过程。

3.2.2 模型的假设与简化

在模型构建中,通常需要做一些假设来简化问题。例如,假设市场中消费者行为遵循某种统计分布,或者假设一个物理过程是线性的。简化有助于集中解决核心问题,但同时也需要在模型的适用性方面进行权衡。

  • 假设条件 :假设条件应该尽量接近实际情况,同时使模型保持简洁,便于分析。
  • 模型简化 :去除不必要的复杂性,保留对问题解决至关重要的因素。

3.2.3 模型的验证与修正

构建模型之后,需要通过实验或实际数据对模型进行验证。如果模型预测的结果与实际情况有较大偏差,可能需要对模型进行修正。验证和修正的目的是确保模型的准确性和可靠性。

  • 实验验证 :利用已知的数据集或实验结果来检验模型的预测能力。
  • 模型修正 :根据验证结果调整模型结构或参数,以提高模型的精确度。

为了进一步阐明这些概念,让我们考虑一个具体的案例:

假设需要构建一个用于预测某种产品销量的数学模型。首先,需要界定问题的范围,比如产品类型、目标市场、销售周期等。然后,收集相关的历史销售数据、市场趋势数据、以及可能影响销量的其他因素数据。数据收集完成后,执行数据清洗和初步处理,比如使用数据挖掘工具识别重要变量。

接下来,选择合适的数学工具,例如回归分析模型或时间序列模型,根据问题的特点决定。为了简化问题,可以假设销量受到价格、广告投入和季节性因素的影响。通过收集这些变量的数据,构建模型并进行参数估计。

最后,利用最近的销售数据验证模型的有效性。如果发现预测结果与实际销量存在较大差异,就需要修正模型,可能需要考虑更多的变量,如竞争者的行为,或者修改模型中的假设条件。通过这样的过程,逐步优化模型,提高其在实际应用中的准确性和可靠性。

在下一节中,我们将介绍构建数学模型的具体实例,以及如何应用相关的技术和方法,来解决实际问题。

4. 多领域问题求解策略

4.1 社会科学问题求解策略

在社会科学领域,问题求解策略通常侧重于理解复杂的社会现象和行为模式。为了有效地分析这些问题,研究者们常常借助统计分析和模拟技术来揭示潜在的社会规律。

4.1.1 应用统计分析与模拟技术

统计分析是探索社会科学问题的基石。通过收集和分析数据,研究者可以建立描述和预测社会现象的模型。例如,用于评估政策影响的计量经济学模型,或用于预测选举结果的统计模型。这些模型能帮助研究者从大量数据中提取有价值的信息,为政策制定提供科学依据。

在模拟技术方面,agent-based modeling(基于代理的建模)是一种流行的模拟方法。这种方法通过创建虚拟环境中的个体(或“代理”),来模拟他们在一定规则下的行为和交互。其结果能够帮助研究者观察复杂社会系统的行为模式,以及政策或社会变动对社会结构的潜在影响。

4.1.2 社会行为的动力学模型

社会动力学模型研究社会行为随时间变化的规律。这类模型能够描绘出社会网络中的信息传播、市场动态、政治冲突等现象。以传染病模型为基础,研究人员发展了多种社会动力学模型,如用于分析公共政策影响的SIR模型(易感者-感染者-移除者模型)的变种。

在应用这些模型时,研究人员常常需要收集大量关于社会行为的数据。这些数据可能包括个人的移动轨迹、交流网络、消费习惯等。通过对这些数据进行深入分析,模型得以揭示社会互动的动态机制,从而为问题求解提供依据。

4.2 工程技术问题求解策略

工程技术和工业系统问题的求解策略侧重于优化设计、提高性能和保障系统稳定性。

4.2.1 运筹学与优化算法应用

运筹学是数学建模中用于决策支持的一个重要分支,它通过构建数学模型帮助解决复杂的管理问题。运筹学中的优化算法,如线性规划、整数规划、网络流算法等,被广泛应用于生产调度、物流规划、资源分配等领域。

例如,制造业中常见的生产调度问题可以通过构建一个线性规划模型来优化,该模型的目标是最小化生产成本同时满足交货期限。优化算法在此类问题中起到核心作用,通过算法计算出最优的生产安排。

4.2.2 系统工程的综合优化模型

系统工程关注的是整个系统的性能,而不是单个部件。综合优化模型需要在考虑成本、性能、可靠性、安全性和环境影响等多个方面寻找最优解。例如,在航空领域,飞机的设计需要考虑气动性能、结构强度、燃油效率等多个因素的综合影响。

系统工程模型通常采用多目标优化方法,如Pareto优化技术,为设计人员提供一系列权衡方案,帮助他们根据实际需求做出最佳决策。

4.3 生命科学问题求解策略

在生命科学领域,建模往往涉及生物过程和复杂的生物系统。生命科学问题的求解策略需要能够捕捉生物系统内在的动态性和复杂性。

4.3.1 生物信息学的数学建模方法

生物信息学利用数学和计算方法研究生物大分子、基因序列等生物数据。通过构建数学模型,研究人员可以模拟和预测生物分子的行为、基因的表达模式,甚至整个生物系统的动态。

例如,基因调控网络的数学模型能够帮助科学家理解基因之间的相互作用关系。这些模型通常需要大量的生物数据作为输入,包括基因表达数据、转录因子数据等。

4.3.2 生态系统与环境科学的模型应用

生态系统模型帮助研究者理解不同生物组分之间的相互作用以及它们与环境之间的关系。这些模型通常需要考虑多个物种、食物网、环境变量等因素。

比如,为了研究气候变化对生态系统的影响,可以构建基于物种个体的模型,模拟个体在不同环境条件下的分布和数量变化。这样的模型有助于制定合理的生态保护政策和管理策略。

4.4 环境科学问题求解策略

环境科学关注的不仅仅是保护自然环境,也包括对环境影响进行评估和管理。

4.4.1 可持续发展模型的建立

可持续发展模型强调在满足当代需求的同时,不损害后代满足需求的能力。这类模型需要整合经济、环境和社会三个方面的因素,对资源利用和环境影响进行系统性分析。

例如,使用生命周期评估(LCA)模型可以评估产品的整个生命周期中对环境的影响,从而为决策者提供关于产品设计、制造过程改进和可持续资源管理的依据。

4.4.2 环境风险评估与管理模型

环境风险评估模型用于预测和评估环境危害的可能性和影响。它们通常用于工业设施选址、化学物质管理、放射性废物处理等领域。

在应用环境风险评估模型时,需要收集有关潜在危害源、受体脆弱性、暴露途径和风险接受水平的数据。通过对这些数据的分析,模型能够估计出不同风险情景的概率和后果,帮助决策者制定有效的风险缓解措施。

4.5 综合理论问题求解策略

多领域的综合理论问题,如复杂系统理论和系统动力学,为理解跨领域的系统交互提供了新的视角和方法。

4.5.1 复杂系统理论在多领域的应用

复杂系统理论提供了一套描述和理解复杂系统如何自组织和演化的工具。这些理论的应用跨越了社会学、生物学、工程学等多个领域。

以生态系统为例,复杂系统理论中的网络分析和混沌理论可以帮助研究者理解生态系统中物种多样性和相互作用的复杂性。例如,通过构建捕食者-猎物动态模型,可以研究种群数量如何随时间变化而出现周期性波动。

4.5.2 系统动力学与混沌理论的应用

系统动力学用于研究复杂系统内部反馈机制和时间延迟对系统行为的影响。混沌理论则进一步探索在非线性系统中初值敏感性和不可预测性如何导致复杂的动态行为。

以气候变化问题为例,系统动力学模型能够模拟气候变化对地球生态系统的影响。模型需要考虑气候系统中的反馈循环,如大气中温室气体浓度的增加导致地表温度升高,进而影响海洋流动和生物多样性。混沌理论进一步解释了气候系统中的复杂现象,比如天气的不可预测性和极端事件的概率。

为了展示不同章节间的关联性,以下是一个简单的表格,它概括了各种模型应用的领域和主要功能:

| 模型类型 | 主要应用领域 | 功能概述 | |-----------------|---------------------|----------------------------------| | 统计分析与模拟 | 社会科学领域 | 描述和预测社会现象,如政策影响评估、选举结果预测。 | | 运筹学与优化算法 | 工程技术领域 | 决策支持和资源优化,如生产调度、物流规划等。 | | 生物信息学的数学模型 | 生命科学领域 | 模拟和预测生物分子行为和基因表达模式。 | | 生态系统模型 | 环境科学领域 | 理解物种间相互作用和环境影响。 | | 复杂系统理论 | 多领域综合应用 | 描述和理解复杂系统自组织和演化。 | | 系统动力学与混沌理论 | 多领域综合应用 | 探索反馈机制、时间延迟和非线性系统动态。 |

通过本章节的介绍,我们可以看到,无论是在社会科学、工程技术、生命科学还是环境科学领域,数学模型的建立和应用都为复杂问题的求解提供了强有力的支持。这些模型不仅帮助研究者更好地理解问题本质,还能够提供决策支持,促进科学发展和创新。

5. 算法和求解方法的选择

5.1 算法的选择与应用

5.1.1 常用算法的优缺点分析

在解决数学建模问题时,选择合适的算法对于获得准确的结果至关重要。以下是一些在数学建模中常用算法的优缺点分析:

  • 线性规划算法:广泛应用于资源优化分配问题。其优点是理论成熟,应用广泛,且有高效的求解器如CPLEX、Gurobi等。缺点是它主要适用于线性关系的问题,当问题具有非线性特性时,可能需要采用其它方法。
  • 遗传算法:模仿自然选择过程,适用于复杂的优化问题。其优点是不需要问题的梯度信息,能够处理非线性、多峰等复杂问题。缺点是收敛速度可能较慢,并且结果可能依赖于参数设置。

  • 蒙特卡洛模拟:通过随机采样估计数值解,适用于具有随机变量的问题。优点是易于理解和实现,能够处理高度复杂的系统。缺点是需要大量的样本量,计算成本较高。

  • 模拟退火算法:模拟物理退火过程,适用于优化问题。优点是跳出局部最优解的能力较强,适合复杂优化问题。缺点是参数调整复杂,且收敛速度可能不如其它确定性算法。

  • 神经网络算法:在模式识别、预测等领域表现优异。优点是能够处理大量非线性关系数据,并且能够自我学习。缺点是需要大量训练数据,训练过程可能耗时,且模型解释性较差。

在选择算法时,应充分考虑问题的特性和以上算法的特点,选择最合适的算法进行模型求解。

5.1.2 算法在模型中的适配性评估

算法的适配性评估是一个重要步骤,需要基于问题的特征和数据的类型来确定。评估算法适配性的步骤通常包括:

  1. 问题分析 :首先需要对问题进行深入分析,了解问题的约束条件、目标函数以及问题规模。

  2. 数据探索 :通过数据探索了解数据的分布特征、噪声水平和变量间的相关性。

  3. 算法实验 :选取几款候选算法,应用到模型中进行初步实验,并收集实验结果。

  4. 性能比较 :从准确性、计算效率、稳定性等方面对不同算法的性能进行比较。

  5. 结果验证 :使用交叉验证、独立测试集等方法验证算法的泛化能力。

  6. 选择与优化 :根据比较结果,选择最佳算法,并对算法参数进行优化。

例如,在进行遗传算法的应用时,需要评估问题是否适合使用此类全局搜索算法,并调整交叉、变异等操作的参数,来优化算法性能。

5.2 求解方法的实践

5.2.1 仿真与实验设计

在数学模型的求解过程中,仿真和实验设计是验证模型有效性的重要手段。它们能够提供对于模型在实际应用中表现的直观理解。实验设计应遵循以下原则:

  • 目的明确 :实验设计前需要明确实验的目标和预期结果。

  • 因素控制 :合理控制实验中的变量,确保每个实验的独立性。

  • 重复性原则 :进行多次重复实验,保证结果的稳定性和可靠性。

  • 随机化原则 :对实验的次序进行随机化处理,避免系统性误差。

仿真实验通常涉及构建模型、输入参数设定和运行模拟,然后收集输出结果,以验证模型的预测。例如,在金融市场模型中,可以使用蒙特卡洛方法来模拟市场行为,并预测不同策略的风险和收益。

5.2.2 模型求解的数值方法

数值方法是指使用计算机进行近似数值计算的方法。求解数学模型通常涉及到以下几种数值方法:

  • 迭代法 :如雅可比法、高斯-赛德尔法等,用于求解线性方程组。

  • 差分法 :将微分方程转化为差分方程求解。

  • 蒙特卡洛方法 :使用随机抽样来求解数学问题。

  • 有限元法 :在工程和物理问题中用于近似解决偏微分方程。

  • 梯度下降法 :求解优化问题的常用方法,通过迭代来最小化目标函数。

例如,在求解偏微分方程时,可以将空间和时间离散化,然后采用有限差分法求解数值解。在优化问题中,梯度下降法可以通过调整步长和迭代次数来优化模型参数。

通过以上章节,我们已经逐步深入探讨了数学建模中算法和求解方法的多样性和选择过程,这为后续章节中详细阐述数据分析与预测技能的提升奠定了理论基础。接下来,我们将更深入地探索数据驱动的建模方法,并探讨如何通过跨学科合作与研究创新来推动数学建模领域的发展。

6. 数据分析和预测技能的提升

在数据分析和预测领域中,深度理解数据分析方法和不断提升预测技能是至关重要的。随着数据量的增加和计算能力的提升,传统分析方法需要与先进的机器学习算法相结合,以适应更复杂的模型需求。本章节将深入探讨数据分析和预测技能的提升途径。

6.1 数据分析方法的深入理解

数据分析是处理、清洗、转换和建模数据的过程,其目的是发现有用的信息、得出结论并支持决策。数据分析方法在很多方面都有应用,比如金融分析、市场营销、健康医疗和政府管理等。

6.1.1 数据清洗与预处理技术

数据清洗与预处理是数据分析中的首要步骤,它对确保分析结果的准确性和可靠性至关重要。数据预处理技术包括数据集成、数据变换、数据规约和数据离散化等。

  • 数据集成 :将来自不同源的数据合并在一起的过程,这通常需要解决数据格式、数据重复和数据冲突等问题。
  • 数据变换 :改善数据质量或使数据更适合于特定分析方法的数据转换过程,常见的变换包括标准化、归一化等。
  • 数据规约 :减少数据量而不损失重要信息的过程,可以采用维度规约(如主成分分析PCA)或数据压缩技术。
  • 数据离散化 :将连续的特征值分组到有限的区间,以便于模型处理。

6.1.2 数据挖掘与模式识别

数据挖掘是从大量数据中寻找模式和关联的过程。它通常使用统计分析、机器学习算法等技术来实现数据的分类、聚类、关联规则挖掘和序列模式挖掘等。

  • 分类 :给定一组数据,目标是建立一个分类函数或模型,用以预测新数据的分类标签。
  • 聚类 :发现数据中的自然分组,即将数据分组到不同的集合中,使得同一组内的对象比不同组内的对象更相似。
  • 关联规则挖掘 :发现大型事务数据集中不同项目之间的有趣关系。
  • 序列模式挖掘 :在时间序列数据中寻找经常出现的模式或顺序。

6.2 预测技能的提升途径

预测技能的提升依赖于对预测方法的深入理解以及对最新技术的掌握。以下是提升预测技能的几种途径:

6.2.1 时间序列分析的应用

时间序列分析是预测未来值的重要工具,它依赖于历史数据的时序特性。时间序列分析的方法包括自回归(AR)、滑动平均(MA)、自回归滑动平均(ARMA)和自回归积分滑动平均(ARIMA)模型等。

  • 自回归模型(AR) :在时间序列数据上应用回归分析,将当前值表示为前几个时刻值的线性组合。
  • 滑动平均模型(MA) :使用误差项的过去值的线性组合进行预测。
  • 自回归滑动平均模型(ARMA) :结合了AR和MA两种模型。
  • 自回归积分滑动平均模型(ARIMA) :ARMA模型的扩展,处理非平稳时间序列。

6.2.2 机器学习与预测模型的结合

结合机器学习方法和预测模型可以提高预测的准确性和效率。常用的机器学习算法包括随机森林、支持向量机(SVM)、神经网络和深度学习等。

  • 随机森林 :基于决策树的集成学习方法,适用于回归和分类问题。
  • 支持向量机(SVM) :通过找到最优的超平面来区分不同类别的数据,是强大的分类算法。
  • 神经网络 :模拟人脑的神经元结构,由大量的节点(或称“神经元”)之间相互联接构成。对于复杂的非线性问题具有很好的预测能力。
  • 深度学习 :以深度神经网络为代表,通过学习数据的高层次特征来进行预测和分类。

通过不断学习和应用这些数据分析与预测技能,研究者和从业者可以大幅度提升自己的专业水平,并在各自领域内解决更加复杂的问题。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《数学建模美赛特等奖原版论文集》汇集了2013年至2016年期间在美国大学生数学建模竞赛(MCM/ICM)中荣获特等奖的论文。这些论文涵盖了从社会问题到科技领域的广泛主题,展示了数学建模在解决复杂问题中的实际应用。每篇论文都详细介绍了问题分析、模型建立、求解过程、结果讨论和模型局限性,为数学建模学习者和研究者提供了宝贵的学习资源和启发。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值